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Semi-supervised machine learning facilitates cell
colocalization and tracking in intravital microscopy
Diego Ulisse Pizzagalli 1,2, Marcus Thelen1, Santiago Fernandez Gonzalez1*, Rolf Krause2*

Abstract
2-photon intravital microscopy (2P-IVM) is a key technique to investigate cell migration and cell-to-cell interactions
in organs and tissues of living organisms. Focusing on immunology, 2P-IVM allowed recording videos of
leukocytes during the immune response, highlighting unprecedented mechanisms of the immune system.
However, the automatic analysis of the acquired videos remains challenging and poorly reproducible. In fact,
both manual curation of results and tuning of bioimaging software parameters among different experiments, are
required. One of the most difficult tasks for a user is transferring to a computer the knowledge on what a cell is
and how it should appear with respect to the background, other objects, or other cell types. This is possibly due
to the low specificity of acquisition channels which may include multiple cell populations and the presence of
similar objects in the background.
In this work, we propose a method based on semi-supervised machine learning to facilitate colocalization. In line
with recently proposed approaches for pixel classification, the method requires the user to draw some lines on
the cells of interest and some line on the other objects/background. These lines embed knowledge, not only
on which pixel belongs to a class or which pixel belongs to another class but also on how pixels in the same
object are connected. Hence, the proposed method exploits the information from the lines to create an additional
imaging channel that is specific for the cells fo interest. The usage of this method increased tracking accuracy on
a dataset of challenging 2P-IVM videos of leukocytes. Additionally, it allowed processing multiple samples of the
same experiment keeping the same mathematical model.
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Introduction

2-photon intravital microscopy (2P-IVM) is a key technique
to investigate cell-to-cell interactions in organs and tissues of
living animals [1]. Focusing on immunology, the analysis of
2P-IVM videos revealed unprecedented mechanisms of the
immune system such as novel interaction patterns between
immune cells, host, and pathogens [2].

The standard imaging pipeline involves the acquisition of
4D videos (3D volumes at different time points) in a properly
prepared sample. Once videos have been acquired, they are
analyzed by performing cell detection, cell tracking, and com-
putation of track-based measures, which are used to quantify
cell migration and interaction (Figure 1). 2P-IVM requires a
fluorescent sample. Although certain molecules of living or-
ganisms are capable to spontaneously emit fluorescence, like,
for instance, the collagen fibers, the great majority of the cells
and tissues need to be labelled with fluorescent markers to be
visible in 2P-IVM acquisitions. The most common labelling
methods are genetically modified (GM) animals, labelling in

vitro with fluorescent dies, usage of fluorescent antibodies.
When multiple cell populations are imaged, to distinguish
between them it is desirable to acquire multiple acquisition
channels having each channel specific for one cell type. This
involves the usage of different fluorescent labeling (each with
a specific emission wavelength), in combination with a set of
optical filters. Such a combination of labeling and filter set
is critical to distinguish a cell population from another, and
from the background.
Indeed, if cells are poorly visible, or similar to other objects,
errors in cell detection can be introduced. These can subse-
quently compromise tracking and affect the final measure-
ments.

Unfortunately, fluorescently labeled immune cells often ap-
pear in more than one acquisition channel or exhibit bizarre
appearance. This is due either to the broad emission spec-
trum of the used fluorescent markers (Figure 2, A) or to the
incorporation of fluorescent material acquired, for instance,
via phagocytosis. The effect of phagocytosis is often visible
when phagocytic cells (i.e. neutrophils) are labeled in vitro
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Figure 1. 2P-IVM imaging pipeline. A laser stimulates fluorescent cells within an organ. Then, emitted fluorescence is
converted into 4D videos (3d stacks at different time points). Cells are detected by separating fluorescent intensity above a
threshold from background. Cell tracking happens by linking cells at different time points. Finally, measures on cell tracks are
computed.

with the formation of bright spots in the lysosomes due to the
accumulation of the marker (Figure 2, B).
Additionally, the fluorescence emitted by cells undergoes
diffraction throughout the sample, introducing a brightness
variation in space (Figure 2, C). Brightness variation and
artifacts can further be introduced by photo-damage and in-
sufficient isolation of animal movements (Figure 2, D). Lastly,
auto-fluorescent objects, such as background and collagen
fibers can appear in the same acquisition channels of cells
with similar intensity (Figure 2, E).

Therefore, specific image processing techniques are required
to generate specific channels where only the cells of interests
are visible.
However, the multiple aforementioned challenges hamper the
usage of generic colocalization methods. Brightness thresh-
olds to separate background from the cells of interest should
be adapted among different areas of the same acquisition and
different experiments. This reduces the usability of special-
ized imaging software packages such as Imaris (Bitplane inc.)
and introduces research bias.
Although morphological information can in principle be taken
into account to distinguish immune cells from the background,
their high plasticity and commonly non-convex shapes intro-
duce additional challenges to consider all the possible cases.

In this work, we propose an imaging processing method based
on semi-supervised machine learning. This approach facil-
itates the transmission of knowledge on the appearance of
cells from an imaging expert to a computer, in line with re-
cently proposed methods for clustering [3]. This knowledge is
then exploited to create an additional imaging channel which
is more specific for the cells of interest. The usage of this
channel improved tracking accuracy on challenging 2P-IVM
videos from the Leukocyte Tracking Database [4]. Addition-
ally, the proposed method allows using the same mathematical
model to analyze different samples of the same experiment.

These are for instance videos from samples labeled using the
same markers, but at different time points or in different an-
imals. By providing examples of desired cells across all the
samples, the computer automatically identifies the common
parameters for the analysis. Hence, it does not require to adapt
brightness thresholds from experiment to experiment, with a
positive impact on the reproducibility of results.

The application of the method is supported by a user-friendly
software with a graphical interface that allows selecting which
features to use according to the videos to be analyzed. Such
software is available as a plugin for Imaris at http://www.
ltdb.info/tools.

Results
Color features improve separation of CFP cells from
SHG background and GFP
Certain fluorescent cells are visible in multiple acquisition
channels. The proposed method was applied to analyze the
movement of neutrophils, adoptively transferred from a CK6/ECFP
animal [5] to a CD11c/GFP animal [6] (Figure 3, A). Addi-
tionally, the acquired data included viral particles labeled with
the DiD fluorescent die [7].
In the videos acquired via 2P-IVM, the emitted spectrum of
neutrophils was captured by two imaging channels centered
on the green and blue wavelengths. However, these channels
captured also the fluorescence from the CD11c/GFP cells and
the auto-fluorescence of collagen (second harmonic genera-
tion). The result was an overlap of the fluorescence emitted
by the two cell populations and collagen (Figure 3, B) which
resulted in poorly separable distributions (Figure 3, C). Addi-
tionally, the acquired videos exhibited spatially non-uniform
brightness and brightness variation over time.
To separate neutrophils from the other cells and collagen
fibers, each pixel was described using a set of features includ-
ing the color of the pixel, the average color in a small circular
neighborhood of radius = 3µm, and the average color in a

http://www.ltdb.info/tools
http://www.ltdb.info/tools
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Figure 2. Challenges in 2P-IVM imaging of immune cells.
A. CFP neutrophils emitting fluorescence in two acquisition
channels with similar intensities. B. Neutrophils
constitutively expressing GFP (green), CFP (blue) or labelled
in vitro with CMTMR die (red). The CMTMR labelled cell
shows non-uniform brightness and accumulation of
fluorescent die in the lysosomes. C. Non spatially-uniform
brightness showing a decrease of luminance (L) towards the
bottom-right part of the image. D. Imaging artifacts due to
saturation which were introduced by the movement of the
animals and surgery defects. E. CFP neutrophil with
elongated shape migrating on collagen fibers.

larger circular neighborhood of radius = 7µm.
20 annotations were added by an imaging expert on the cells
of interest, and 20 annotations on the other cells/background.
These annotations were used to classify every single pixel,
creating an additional imaging channel which is specific for
the neutrophils (Figure 3, D).
The usage of the computed colocalization channel improved
the accuracy of cell tracking (Figure 3, E) excluding unwanted
objects such as not-motile pieces of collagen fibers and GFP
cells (Figure 3, F), and improving the detection of poorly
visible cells (Figure 3, G).

Note for the preprint version: In this version, we quan-
tify only track duration using the raw channel and using the
colocalization channel. This is a weak indicator of tracking
accuracy. We will provide improved quantification, using the
AOGM measure with respect to the ground truth in the next
revised version. Additionally, we will include screenshots of
the tracks.

Path-features separate cells from cell debris
The annotations provided by the user in form of a line (Figure
4, A, yellow and red lines) were exploited, not only to detect
pixels belonging to foreground or background, but also to
decompose images into superpixels (Figure 4, A, white lines).
Considering a cell as a group of pixels, a line drawn between
the pixels of the cell contains information on how these pixels
are connected [3]. We used this information to find the opti-
mal parameters to decompose an image into superpixels using
SLIC [8]. Indeed, an error measure was estimated by count-
ing how many superpixels were crossed by lines of multiple
classes (Figure 4, B). Then, the compactness parameter of
SLIC was optimized by minimizing the error estimate using
sequential search.
A coarse decomposition on images into superpixels allowed
to classify superpixels instead of single pixels, benefiting of
the superpixel properties of boundary adherence and faster
execution. The desired class (or target brightness value when
using a linear prediction) can be estimated using the anno-
tations provided by the user. If a superpixel is crossed by a
line of desired objects, then its target value was set to 1. If a
superpixel is crossed by a line of undesired objects, then its
target value was set to 0. If a superpixel is crossed by multiple
lines of different classes, then its value corresponds to the
weighted average of the different classes (Figure 4, C).
Considering an image as a graph, having pixels as vertices
and color differences as edges, shortest-paths on the image are
useful to analyze its content [9, 3]. To this end, we described
each superpixel as a set of shortest-path between arbitrary
points inside the superpixel (Figure 4, D, up). A support
vector machine was then trained to classify each path indepen-
dently. The final predicted class for each superpixel was given
by a consensus voting on the classes of the paths inside the
superpixel, using, for instance, the median of the predicted
value (Figure 4, D, low).
This method allowed to distinguish between superpixels con-
taining cells and particles of disrupted cells (Figure 4, E).
Note for the preprint version: Figure 4, E reports the results
from an older version of the software, with a bug that creates
artifacts on the borders and less accuracy. These results are
planned to be updated in the next revised version.

Discussion
The proposed method relies on brushing, in line with other
tools such as Ilastik [12] and Trainable WEKA Segmentation
[13], asking the user to hand-draw some lines on interest-
ing points (i.e. on some cells of interest) and other lines on
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Figure 3. Pixel-wise classification. A. 2P-IVM micrograph showing CFP neutrophils (light blue) in the popliteal lymph node
of a CD11c/GFP animal (green) with collagen structures (blue - SHG) and viral particles (red - DiD). B Scatter plot showing
the intensity of each pixel in two acquisition channels. The central tails are cells appearing in more than one imaging channel.
C. Histogram of pixel intensity in two acquisition channels. D. Results (binary mask) of pixel classification. E. Comparison of
track duration when using the raw channels or the generated channel. F. Tracks (white lines) obtained using the original
imaging channels including errors (red arrows). G. Tracks (white lines) obtained using the generated colocalization channel
specific for CFP cells.

non-interesting points (i.e. other cells, background, etc.). By
contrast to the aforementioned tools, the proposed method
exploits the provided information differently. More precisely,
the annotations provided by the user (which are in the form of
a line), are used to build a graph-based representation of the
microscopy data.
Such a graph is used by the proposed method to compute
specific features to face the challenges of 2P-IVM videos of
immune cells.
Then, machine learning is applied on the graph to find a math-
ematical model that maps every single pixel to a scalar value,
expressing how much it is likely to be part of the generated
imaging channel. Once this model has been obtained, it can
be applied to the entire video. Considering annotations from
multiple videos, the method has the potential to be applied to
process multiple videos without requiring parameters tuning.

Recently proposed approaches based on neuronal networks
with convolutional layers such as U-NET [14] achieved re-
markable performances for cell detection in microscopy data,
using only limited annotations from the user. With respect
to these approaches, the proposed method uses hand-crafted
features. Although this choice is less generic and might not
be optimal, it allows the user to choose the more appropriate
features to face specific challenges in 2P-IVM imaging of the
immune system.

Methods
Intravital two-photon microscopy Deep tissue imaging was
performed on a customized up-right two-photon platform
(TrimScope, LaVision BioTec). Two-photon probe excitation
and tissue second-harmonic generation (SHG) were obtained
with a set of two tunable Ti:sapphire lasers (Chamaleon Ultra
I, Chamaleon Ultra II, Coherent) and an optical parametric
oscillator that emits in the range of 1,010 to 1,340 nm (Chama-
leon Compact OPO, Coherent), with output wavelength in the
range of 690–1,080 nm.

Mice All animals were bred in-house or acquired from Jan-
vier labs (C57BL/6). Mice were maintained under specific
pathogen-free conditions at the IRB, Bellinzona and used in
accordance with the Swiss Federal Veterinary Office guide-
lines. CD11c-GFP [6], CK6/ECFP [5]. All animal experi-
ments were performed in accordance with the Swiss Federal
Veterinary Office guidelines and authorized by the relevant
institutional committee (Commissione cantonale per gli esper-
imenti sugli animali, Ticino) of the Cantonal Veterinary with
authorization numbers TI28/17, TI02/14 and TI07/13.

Pixel-wise classification Each pixel is classified as fore-
ground or background, based on a predictive model trained on
a few landmarks provided by the users. The predictive model
is generated by training a Supported Vector Machine binary
classifier using the radial basis function kernel. color features
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Figure 4.
Path-based features for superpixel classification. A. 2P-IVM micrograph showing CFP neutrophils (light blue) in the popliteal
lymph node of a CD11c/GFP animal (green) with collagen structures (blue - SHG) and viral particles (red - DiD). B Scatter
plot showing the intensity of each pixel in two acquisition channels. The central tails are cells appearing in more than one

imaging channel. C. Histogram of pixel intensity in two acquisition channels. D. Results (binary mask) of pixel classification.
E. Comparison of track duration when using the raw channels or the generated channel

of each pixel, and in a circular neighborhood were used.

Superpixel-wise classification Videos were initially de-
composed in superpixels using SLIC [8]. SLIC was applied
on each slice of the 3d stack independently. A fixed number
of 1000 superpixels was used for the results reported in this
preprint version. Compactness was automatically determined
by the method, minimizing the number of paths of different
classes in each superpixel. Each superpixel was described
employing K = 5 paths. Each path was described as the color-
sequence of the vertices. Paths shorter, or longer than 8 points,
were interpolated to 8 points using average smoothing.

Implementation The proposed method was entirely written
in Matlab (Mathworks) as an extension for the bioimaging
software Imaris and tested on the versions 7.7.2 to 9.3.1.
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