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Abstract 15 

A recurrent challenge in biology is the development of predictive quantitative models 16 

because most molecular and cellular parameters have unknown values and realistic models 17 

are analytically intractable. While the dynamics of the system can be analyzed via 18 

computer simulations, substantial computational resources are often required given 19 

uncertain parameter values resulting in large numbers of parameter combinations, 20 

especially when realistic biological features are included. Simulation alone also often does 21 

not yield the kinds of intuitive insights from analytical solutions. Here we introduce a 22 

general framework combining stochastic/mechanistic simulation of reaction systems and 23 

machine learning of the simulation data to generate computationally efficient predictive 24 

models and interpretable parameter-phenotype maps. We applied our approach to 25 

investigate stochastic gene expression propagation in biological networks, which is a 26 

contemporary challenge in the quantitative modeling of single-cell heterogeneity. We 27 

found that accurate, predictive machine-learning models of stochastic simulation results 28 

can be constructed. Even in the simplest networks existing analytical schemes generated 29 

significantly less accurate predictions than our approach, which revealed interesting 30 
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insights when applied to more complex circuits, including the extensive tunability of 31 

information propagation enabled by feedforward circuits and how even single negative 32 

feedbacks can utilize stochastic fluctuations to generate robust oscillations. Our approach 33 

is applicable beyond biology and opens up a new avenue for exploring complex dynamical 34 

systems.  35 
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A major goal of systems biology is to develop quantitative models to predict the behavior 36 

of biological systems (1, 2). However, most realistic molecular and cellular models have a 37 

large number of parameters (e.g., reaction rates, cellular proliferation rates, extent of 38 

physical interactions among cells or molecules), whose values remain unknown and are 39 

often challenging to measure or infer quantitatively (3, 4). While some biological 40 

phenotypes are robust to parameter variations (5), most are “tunable” by parameters (6). 41 

Therefore, analyzing the behavior of a system over the entire plausible space of parameters 42 

is needed to study the phenotypic range of a biological system and its parameter-phenotype 43 

relationships (7–9). A case in point concerns a contemporary problem in single cell biology: 44 

Despite the increasing availability of single-cell gene expression data enabled by rapid 45 

technological advances (10), an important unanswered question is how cell-to-cell 46 

expression variation and gene-gene correlation among single cells are regulated by the 47 

underlying gene regulatory network (GRN), within which different signals, including those 48 

arising from environmental variations or biochemical fluctuations, are transmitted (11–13). 49 

  Stochastic master equations (SMEs) (see Glossary) can be used to model, analyze, 50 

and predict single-cell heterogeneity and gene-gene correlation behaviors based on GRNs. 51 

A multitude of cell type- and environment-dependent stoichiometric and kinetic parameters 52 

are required, but their values remain largely unknown. To make SMEs analytically 53 

tractable, simplifying assumptions are needed with the risk of ignoring important features 54 

such as “bursty” transcription (14, 15). Alternatively, resource intensive computational 55 

simulations (e.g., using Gillespie’s Algorithm (16)) can be used to obtain the stochastic 56 

dynamics of individual parameter configurations; sensitivity analysis can then be employed 57 

to evaluate which parameters can affect the phenotype of interest (3). However, extensive 58 
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computational resources are required to analyze the parameter space, given the large 59 

uncertainty in parameter values and the complex correlation structure among parameters. 60 

Plus, simulation analysis alone often does not automatically yield intuitive understanding.    61 

 Here, we combine computational simulation of full-feature stochastic models and 62 

machine learning (ML) to develop a framework, called MAchine learning of Parameter-63 

Phenotype Analysis (MAPPA), for constructing, exploring, and analyzing the mapping 64 

between parameters and quantitative phenotypes of a stochastic dynamical system (Figures 65 

1A and S1; Supplementary text). Our goal is to take advantage of the large amounts of data 66 

that can be generated from bottom-up, mechanistic computational simulation of dynamical 67 

systems and the ability of modern machine learning approaches to “compress” such data 68 

to generate computationally efficient and interpretable models. MAPPA thus builds 69 

efficient, predictive, and interpretable ML models that capture the nonlinear mapping 70 

between parameter and phenotypic spaces (parameter-phenotype maps). The ML models 71 

can be viewed as “phenomenological” solutions of the SME that can predict the system’s 72 

quantitative behavior from parameter combinations, thus bypassing computationally 73 

expensive simulations. They also can delineate which and how parameters and parameter 74 

combinations shape phenotypes, both globally throughout the parameter space and locally 75 

in the neighborhoods of individual parameter configurations. We introduce visualizations 76 

to enable interactive exploration of the parameter-phenotype map, including a web 77 

application for interrogations of analysis below (https://phasespace-explorer.niaid.nih.gov).  78 

 To assess MAPPA, we first applied it to study how information (as encoded by the 79 

changes in gene expression over time) is transmitted from one gene to another (i.e., the 80 

propagation of variation (PoV)) in a prototypical, two-gene network model in single cells 81 
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(Figure 1B, see Methods) (12). While existing analytically tractable models for this circuit 82 

require simplifying assumptions (14, 15), here we analyzed a full-feature model with 83 

mRNAs and proteins as distinct species, and promoters that can be switched stochastically 84 

between transcriptionally active (on) and inactive (off) states. As a measure of information 85 

propagation between genes X and Y, we defined the maximum time-lagged correlation 86 

(denoted as !"##(%&,%()) between mRNAs X and Y as the maximum cross-correlation 87 

between %&(*) and %((* − ,), where %&(*) and %((*) are copy numbers of mRNAs X 88 

and Y at time *, respectively, and , is the time lag (Figure 1C). The same metric can be 89 

applied to proteins, here we chose to focus on mRNAs since they are the dominant 90 

measurement modality in single cell studies.  91 

Simulation on a large number (76,532) of randomly sampled, biologically plausible 92 

parameter combinations (see Methods) revealed that very few had high correlations (e.g., 93 

only 315 had a correlation of greater than 0.7) (Figure S2A) (12). Dimension reduction 94 

visualization using tSNE (Figure 1D) indicated that the parameters with high 95 

!"##(%&,%() formed clusters. Moreover, additional parameter combinations sampled 96 

from these regions also had high correlations. Thus, biased sampling guided by the 97 

phenotype of the neighbors can be used to increase the representation of rare parameter 98 

combinations (Figure 1E and S2B). Using this approach, we trained random forest (RF) 99 

regression models for !"##(%&,%()  and assessed their predictive capacity using 100 

independently simulated data (Figure S2C). Both the model trained using the initial, 101 

uniformly sampled parameter combinations (r=0.93; Figure S2D) and the one trained by 102 

incorporating additional samples from the high-correlation regions showed excellent 103 

prediction performance (r = 0.98; Figure 1F); the latter had better performance in the high-104 
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correlation regions (Figure S2E). A two-class (high versus low correlations), categorical 105 

RF model performed similarly well (AUC = 0.98; Figure S2F; see Methods).  106 

RF ML models provide “variable importance” to quantify the extent of influence a 107 

parameter can exert on the phenotype, both globally (GVI, Figures 1G and S2G) for the 108 

entire parameter space and locally (LVI, Figures 1H and S2H) at a particular point in that 109 

space (see Methods). For example, GVI revealed that the degradation rate of protein X 110 

(-.&), the off-rate of the promoter of gene Y (/011( ), and the transcription rate of mRNA Y 111 

(/2( ) are the most important for determining !"##(%&,%(), while the promoter switching 112 

rates of gene X (/011&  and /03& ) are less important (Figure 1G). Based on the LVI profiles, 113 

parameter combinations can be clustered into qualitatively distinct groups (Figures 1H and 114 

S2H). For example, the degradation rate of mRNA X is more important in cluster 7 than in 115 

other clusters (Figure 1H). Thus, individual parameters can exert local, “neighborhood”-116 

dependent influences on the phenotype, consistent with the notion that gene networks may 117 

employ distinct strategies for PoV regulation depending on the cellular and environmental 118 

conditions (12). 119 

To assess MAPPA further, we examined an analytical model (14, 17) in which 120 

simplifying assumptions were made to attain tractability (e.g., the promoter on/off 121 

switching is averaged; see Methods.) This model showed that  456
456 7458

 is one of the main 122 

factors determining !"##(%&,%() (see Methods), which is consistent with the GVI that 123 

-2&  is important. However, LVI predicted that the effect of -2&  on !"##(%&,%() depends 124 

on the actual parameter combinations (Figure 1H). Notably, it is important in LVI cluster 125 

7 but less so in cluster 8. In both clusters (more pronounced in cluster 8), the ML model 126 

performed better than the analytical model (Figures 2A and 2B). The analytical model had 127 
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incorrectly predicted that those parameter combinations with -2& > -2(  (prevalent in 128 

cluster 8) have low !"##(%&,%() (Figures 2B for cluster 8 and S3A-B for all parameter 129 

combinations). Closer examination revealed that these parameter configurations also had 130 

high /2&  and -2&  relative to the promoter switching rates (i.e., /03&  and /011& ). Thus, the 131 

promotor switching dynamics of gene X was a main driver of the fluctuations of mRNA 132 

X: a burst of transcripts was made in the on-state and transcripts were then degraded rapidly 133 

in the off-state. This gave rise to non-Poissonian mRNA fluctuations (18) and coordinated, 134 

“discrete" states involving two genes (i.e., either low or high levels of both mRNAs X and 135 

Y), as exemplified in the case shown in Figures 2C and 2D (parameter key: 136 

042015_AAACEZGP; see Methods for more information on parameter keys). In contrast, 137 

those parameter combinations with -2& < -2(  exhibited more continuous correlations (see 138 

Figures S3C-D for an example). This PoV mechanism may underlie the discrete single-cell 139 

gene-gene correlations observed in our earlier experiments (12) and could be employed by 140 

cells to attain multi-stable gene expression states even without complex 141 

feedback/feedforward mechanisms (19). “Bursty” transcriptional dynamics is a well-142 

known source of cell-to-cell expression variation of individual genes, here MAPPA 143 

analysis revealed fresh insights on how such variations can be propagated from gene to 144 

gene in the regulatory network to generate distinct cellular states.  145 

  The LVI can be used to guide fast, high-resolution in silico explorations of how 146 

parameter perturbations of different extents may affect phenotypes, which can be 147 

computationally slow and resource intensive when full-blown simulations are used. For 148 

example, the LVI of the  parameter configuration discussed above that resulted in discrete 149 

correlation (parameter key: 042015_AAACEZGP;  Figures 2C and 2D; 150 
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!"##(%&,%()=0.83) predicted that the degradation rate of protein X (-.& ) and the 151 

transcription rate of gene X (/2&—regulating the “burst” size) were the most important 152 

determinants of !"##(%&,%(), while the on-rate of promoters X and Y (/03&  and /03( ) 153 

were the least important (Figure 2E). Indeed, as confirmed by actual simulations, tuning 154 

-.& and /2&  locally affected !"##(%&,%() substantially, while changing /03&  and /03(  did 155 

not (Figures 2F and S3E). Together, our results illustrate that predictive ML models linking 156 

parameter and phenotypic spaces can be built successfully and are useful as 157 

computationally efficient and phenomenological solutions of the associated SMEs. Our 158 

analyses also provided insights on PoV regulation that go beyond those from analytically 159 

tractable approaches. 160 

 Gene networks containing feedforward interactions are found across phylogeny and 161 

biological processes (20, 21) (Figure 3A). To assess the ability of MAPPA to analyze more 162 

complex networks, we applied it to study two types of feedforward circuits:  1) the coherent 163 

type (PPP), in which X positively regulates Y and Z, and Y also positively regulates Z, 2) 164 

the incoherent type (PNP), in which X activates both Y and Z, while Y represses Z (22). 165 

The PPPs can function as delayed activators to filter out transient fluctuations in upstream 166 

signals, while the PNPs can serve as accelerated activators or detectors of changes in the 167 

input signal over time (22, 23). However, the function of these circuits, especially that of 168 

the Y arm, is not well understood when stochasticity is present—e.g., how is information 169 

transmission from gene X to gene Z (!"##(%&,%;)) regulated by gene Y? We thus 170 

defined the phenotype of interest as the ratio (or “fold change” (FC)) between the 171 

!"##(%&,%;) of the network with and that without the Y feedforward arm when all the 172 

other parameter values remained fixed (Figure 3A; see Methods).  173 
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Stochastic simulation revealed a notable difference in FC between the two types of 174 

feedforward circuits (Figures 3B-C and S4A-B). In PPP, the Y-mediated loop can either 175 

increase (FC>1) or decrease (FC<1) !"##(%&,%;) , but the correlation was reduced 176 

(FC<1) in PNP for most parameter combinations, even down to negative values in some 177 

cases (i.e., the direction of correlation flipped); these were more apparent when the 178 

correlation was lower (e.g., less than 0.4) when Y is absent (Figures 3B-C). Moreover, PPP 179 

and PNP also differ in the time lag needed to maximize the correlation (!"##(%&,%;)): 180 

the Y-mediated arm tends to lengthen or shorten the delay between X and Z in the PPP or 181 

PNP, respectively (Figures S4C-D), which are consistent with the aforementioned 182 

functions of PPP and PNP as delayed and accelerated activators, respectively. Together, 183 

simulations revealed distinct functions of the Y arm in regulating information propagation 184 

in the PPP and PNP circuits: in a “co-activating” circuit (PPP), the Y arm can increase the 185 

correlation extended over longer timescales, while the negative regulating Y arm in the 186 

PNP can reduce the transmission of variation from X to Z, thereby maintaining Z 187 

homeostasis and reducing Z’s “memory” on X fluctuations.  188 

 What regulates FC is less clear. We therefore trained RF ML models that maps 189 

parameters to FC (Figure S5A; Methods). These models showed excellent prediction 190 

performance (r = 0.93 (PPP) and r = 0.91 (PNP)) (Figures S5B-C). Interestingly, despite 191 

their phenotypic differences, the most important parameters for determining FC were 192 

similar between the two circuit types (Figures 3D-E, S5D, and S5F). These parameters fall 193 

into three categories regulating the transmission of the fluctuations from: 1) X to Y (<&( 194 

and /2( ), 2) Y to Z (-.(  and <(;), and 3) X to Z (<&; ). Most notably, tuning the K 195 

parameters (Equations 29, 35, and 36 in Methods) can shift the transfer function in and out 196 
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of the range of variation of the upstream regulator: when operating out of range (at the 197 

saturating regime of the transfer function), variation in the activity level of the upstream 198 

factor are buffered and thus cannot be transmitted to the downstream gene (Figure 3F). 199 

Posttranslational modification of the upstream regulator and epigenetic modification of the 200 

promoters/enhancers of the target gene are capable of regulating K in this manner (24). 201 

Thus, given permitted transmission of variation directly from X to Z, MAPPA pointed to 202 

several means for Y to influence the correlation between X and Z (and thus the FC) (Figure 203 

3G).   204 

 Similar to the example above (Figure 2), the LVI map revealed that the contribution 205 

of individual parameters to FC depends on the parameter configuration (Figures S5E and 206 

S5G; see Methods). For example, the Hill coefficients (e.g., =(; ), which govern the 207 

“steepness” of the transfer functions, are generally not important (Figures S5D and S5F). 208 

However, LVI showed that =(;  is important at a particular parameter configuration 209 

(parameter key: 011416_AAAAFJWZ) in the PPP circuit (Figure S5H). With this 210 

configuration information can be transmitted from X to Z and from Y to Z, but that between 211 

X and Y was minimal because <&( and /2(  were low and FC was therefore low (0.26) due 212 

to the added noise transmitted from Y to Z (Figures S5H-I). Actual simulation confirmed 213 

that decreasing =(; leads to decreased noise transmission from Y to Z (Figure 3G) and thus 214 

an increase in FC (Figure S5J). These data illustrate that by employing even simple 215 

feedforward architectures, cells can attain additional flexibility in tuning the co-variation 216 

between circuit components (X and Z). For example, having separate “modulatory” Y 217 

feedforward arms can be useful when X is a master regulator of many genes: each Y can 218 

independently tune information transfer between X and a specific set of downstream genes. 219 
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  Negative feedback circuit motifs are ubiquitous in biology; their functions include 220 

maintaining homeostasis, buffering fluctuations, and driving oscillatory behaviors (25, 26). 221 

While autoregulatory feedbacks have been analyzed in the context of stochastic gene 222 

expression (27), the two-gene negative feedback circuit (Figure 4A and Methods), an 223 

extension of the simple two gene circuit we analyzed earlier (Figure 1), has received less 224 

attention despite its intriguing, implicated roles in generating oscillatory behaviors such as 225 

circadian rhythm (28). Stochastic simulations of this circuit revealed parameters that 226 

resulted in oscillatory behavior (Figures 4A and S6A; Methods). In addition, deterministic 227 

modeling and bifurcation analysis confirmed that this circuit is capable of oscillations 228 

(limit cycle oscillations or damped oscillations) (Figure S6B and Methods) (29, 30). When 229 

stochasticity is considered, oscillations (due to “stochastic resonance”) can occur even 230 

under parameter regimes that are predicted to not oscillate according to deterministic 231 

models (31–33), thereby suggesting that in this circuit, stochasticity together with the 232 

appropriate coupling (i.e., governing the PoV) between genes X and Y can give rise to 233 

oscillations beyond classic “limit cycle” mechanisms.  234 

We thus applied MAPPA to explore how the PoV between X and Y can regulate 235 

oscillatory behaviors when stochasticity in gene expression is present. To quantify 236 

oscillatory phenotypes, time-varying gene expression levels were transformed to the 237 

frequency domain via power spectra analysis. Since a dominant and narrow peak at a 238 

specific frequency is expected if the system is oscillating with a relatively constant period 239 

and amplitude (Figure 4A, Methods), we focused on two quantitative phenotypes: 1) the 240 

quality factor of oscillation (QF), quantifying how tall and narrow the dominant peak is, 241 
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and 2) the peak frequency (PF), where the peak is located in the power spectrum (Figures 242 

4A and S6C-D; Methods) (34).  243 

Predictive ML models for both QF (r = 0.77; Figure S6E) and PF (r = 0.94; Figure 244 

S6F) could be built (Methods), although our model tended to underestimate QF when QF 245 

is large. Based on GVI, degradation rates (-2& , -.&, -2( , and -.() were the most important 246 

for predicting both QF and PF (Figures 4B-C and S6G-H), although their relative 247 

importance can, again, vary depending on the parameter configuration (Figures S6I-J). 248 

Thus, having the appropriate combination of relaxation time scales is required for robust 249 

oscillations and for setting the period. Parameter combinations associated with higher QF 250 

(QF>0.4) tended to have matching protein degradation rates for X and Y (i.e., -.& and -.( 251 

are similar), yet matching mRNA degradation rates (-2&  and -2( ) was not necessary (Figure 252 

4D). <(& also needs to be low so that even low levels of the Y protein can have a sizable 253 

suppressive effect on the transcription rate of gene X (Figure 4D). Both <&( and <(& (the 254 

TF activity needed to achieve half maximal transcription rate of the target gene) and the 255 

Hill coefficient (=(&) of the negative feedback also had high GVI for QF (Figure 4B). 256 

Deterministic modeling similarly suggested that a high =(& is required for oscillations (35), 257 

suggesting that, in general, parameters like =(&  may regulate both the “average” (as 258 

revealed by deterministic models) and fluctuation induced oscillatory phenotypes. 259 

We next asked how stochasticity and PoV shape oscillatory phenotypes beyond the 260 

behavior predicted by deterministic models. Deterministic modeling predicted three non-261 

overlapping classes of parameter configurations with distinct behaviors: 1) limit cycle 262 

oscillations (LC), 2) damped oscillations (DO), or 3) stable steady states (SS)). We 263 

assessed the QF for each of the parameter combinations that fell within these individual 264 
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phenotypic classes (Figure 4E). This analysis revealed that even the non-oscillatory 265 

parameter regimes (based on deterministic modeling) can have non-zero, sizable QF once 266 

the effect of stochasticity is considered, and each class has distinct but overlapping 267 

distributions of QF. As expected, LC had the largest fraction of its parameter combinations 268 

with high QF while SS had the least. More surprisingly, each of the three distributions span 269 

wide ranges and even some of the SS parameter combinations can have QF approaching 270 

the median of the LC distribution. These results suggest that stochasticity and PoV between 271 

X and Y may together be exploited by cells to attain and finetune oscillatory behavior 272 

beyond that predicted by deterministic considerations alone (Figure 4E). 273 

 To assess the regulatory effects of the key parameters predicted by our ML model, 274 

we chose a parameter combination (parameter key: 111315_AAAAENMF) with high QF 275 

and varied both <(& and =(&, as suggested by their high LVI for QF at this particular point 276 

in parameter space (which belongs to the LC class exhibiting relaxation-type oscillations 277 

due to the strong feedback (low <(&  and high =(& ) based on deterministic modeling) 278 

(Figure 4F) (35). Our ML model predicted that increasing <(& or decreasing =(& can lower 279 

QF, which was confirmed using data from actual stochastic simulation (Figures 4G and 280 

S6K). While deterministic modeling suggested a qualitatively similar requirement of low 281 

<(& for limit cycle oscillation (green area in Figure 4H), here with stochasticity considered 282 

a higher QF (e.g., QF>0.4) can be attained even when =(& is lower (grey area in Figure 283 

4H), especially when compensated by a lower <(& (i.e., higher sensitivity to X suppression) 284 

(Figures 4G and 4H). Our analyses thus revealed interesting insights on the regulation of 285 

noise induced oscillation in this feedback circuit. By utilizing naturally arising stochasticity 286 

and PoV, this circuit could generate oscillation even when =(& is low and thus far from the 287 
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DO-LC bifurcation point (where the system transitions from DO to LC; the boundary 288 

between green and pink areas in Figure 4H). Operating at a lower =(& may be biologically 289 

more desirable as it can potentially improve operational robustness (e.g., under changing 290 

environments) because random switching between DO and LC is less likely (35). These 291 

results further illustrate how MAPPA can complement and provide information beyond 292 

analytically tractable models in a computationally efficient manner.  293 

MAPPA generates and utilizes massive data from mechanistic simulation of 294 

biological models and builds ML models to map parameters to phenotypes. The resulting 295 

ML models can enable computationally efficient exploration of large parameter spaces and 296 

reveal which and how parameters affect a system’s behavior at both the global and local 297 

(parameter dependent) levels. MAPPA can guide which parameters to measure, dissect the 298 

robustness and “optimality” of the system, suggest evolutionary trajectories, and empower 299 

synthetic biology (3, 36, 37). MAPPA can in principle be applied to study systems 300 

comprising hundreds and thousands of parameters. Given the enormous parameter space, 301 

however, it may be computationally intractable to sample sufficient representative 302 

parameter combinations for training generalizable ML models. One strategy worth further 303 

testing, as we had explored above, would be to start with sparse random sampling and then 304 

increase the sampling depth incrementally but biasedly. For example, we can iterate 305 

between ML model evaluation (i.e., prediction performance) and targeted sampling from 306 

parameter regions associated with desired phenotypes but poor prediction performance. 307 

This scheme may converge towards informative models relatively quickly even when the 308 

number of parameters is large. For example, Loyola et al. (38) suggested an iterative 309 

sampling strategy that theoretically does not depend on the dimensionality of the input 310 
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space, thus effectively avoiding the curse of dimensionality. As future work, incorporating 311 

such approaches to MAPPA can potentially enable efficient analysis of networks with 312 

orders of magnitude more parameters. Utilizing the large amounts of data generated from 313 

bottom-up, mechanistic computational simulation of dynamical systems and the ability of 314 

modern machine learning approaches to “compress” such data to generate computationally 315 

efficient and interpretable models is a promising direction for dissecting complex 316 

dynamical systems. 317 
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Figure 1. MAPPA overview and applying it to study the propagation of gene 

expression variability in a two-gene (transcription factor-target gene) network. 

(A) MAPPA utilizes massive simulation data and machine learning to construct models 

that can accurately and efficiently predict quantitative phenotypes given high-dimensional 

parameter combinations without using resource intensive dynamical simulations. The 

resulting machine learning models also serve as interpretable parameter-phenotype maps.  

(B) The two-gene network model in which the protein product of gene X regulates the 

transcription rate of gene Y. The promoter of both X and Y undergoes stochastic on-off 

state switching. Both the mRNAs and proteins undergo first order degradation. See 

Methods for additional details. 

(C) Definition of the phenotype of interest: quantifying the propagation of gene expression 

variability (or information) from gene X to gene Y. The time trajectories of mRNA X and 

Y generated by stochastic simulation from a specific parameter configuration is shown here 

for illustration. Here the metric of information transmission/propagation used, 

!"##(%&,%() , was defined as the maximum of the cross-correlation between %&(*) 

(level of the mRNA X) and %((* − ,) (level of the mRNA Y) across a pre-defined range 

of time lags , (here the red dot indicates the maximum across ,’s). We only consider 

correlations with , < 0 in this network to capture the causal relationship between X and Y 

(X à Y). 

(D and E) Visualization of the parameter space and the phenotype using two-dimensional 

(2d) t-distributed Stochastic Neighbor Embedding (tSNE) computed from the sampled 

parameter combinations. (D) tSNE plot for (left) the initial simulated data and its subset 

(right) with !"##(%&,%() > 0.7. (E) Additional parameter combinations nearby those 



	

with !"##(%&,%() > 0.7 were sampled (referred herein as “additionally sampled”) and 

simulated to increase the representation of high-correlation parameter combinations; here 

the tSNE plot for the combined data (initial samples plus additionally sampled) with 

!"##(%&,%() > 0.7 is shown. The color scale denotes !"##(%&,%().  

(F) Scatter plot showing the concordance between the independently simulated 

!"##(%&,%() (x axis – not used in ML model training) vs. those predicted by the RF 

regression model using the model parameter values alone (y axis) (r = 0.98); note that the 

RF model was trained using the combined training data; each point corresponds to a 

parameter combination. The red points are those from the independent test set of the 

initially sampled parameter combinations; the blue dots correspond to the independent test 

set of the additionally sampled parameter combinations nearby the initial combinations 

with high (>0.7) !"##(%&,%(). The color scale denotes the distribution density reflecting 

the relative abundance of data points (see Methods for details). 

(G) Global Variable Importance (GVI) (x axis) of the model parameters (y axis) fitted by 

the RF regression model. The permutation GVI is shown, which reflects the increase in 

prediction errors in out-of-bag data after permuting the indicated variable. Another type of 

GVI (impurity GVI) is shown together with the permutation GVI in Figure S2G. 

(H) A summary heatmap depicting the Local Variable Importance (LVI) of the RF 

regression model. Each row corresponds to a cluster of parameter combinations that exhibit 

similar LVI profiles across the indicated parameters (columns); the values shown in the 

heatmap are the average across all parameter combinations within each cluster. Eight 

clusters are shown as indicated by the cluster number/color bar on the left; the number of 

clusters were chosen qualitatively by considering: 1) ease of visualization in the limited 



	

space, 2) the qualitative diversity of LVIs that the clusters can illustrate (Methods). The 

LVI values shown in the heatmap are the average increases in the squared out-of-bag 

residuals provided by the randomForest package in R (see Methods). 
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Figure 2. Local variable importance reveals parameter configurations giving rise to 

coordinated (i.e., both genes), discrete (on or off) stable states that were not predicted 

by analytical analysis. 

(A and B) Scatter plots showing !"##(%&,%() of ML model prediction vs. simulation 

(left) and analytical approximation vs. simulation (center) and heatmap of parameter 

combinations (rows) (right) in LVI clusters (A) 7 and (B) 8. The parameter combinations 

in the heatmap were ranked in increasing order by the “error” made by the analytical model 

compared to actual simulations, i.e., by the difference of !"##(%&,%()  between 

simulation and the analytical model; for LVI cluster 8 (in 2B), the parameter sets were split 

into those with differences ≤ 0.25 (top) or >0.25 (bottom). The color scale in the scatter 

plots denotes the distribution density reflecting the relative abundance of data points (see 

Methods for details). 

(C and D) (C) Scatter plot and (D) corresponding time trajectories of mRNA X (%&) and 

mRNA Y ( %()  for a representative parameter combination (parameter key: 

042015_AAACEZGP) from the bottom heatmap in 2B where the analytical approach 

performed poorly compared to the ML models.   

(E) The specific parameter combination (the “starting point”) selected for in-silico 

perturbation experiments and its corresponding LVI. Avg. - average; OOB - out-of-bag. 

(F) Contour maps depicting the predicted (top) and simulated (bottom) phenotypic values 

((!"##(%&,%()) as parameters 67&(x axis) and 89&  (y axis) were perturbed starting from 

the selected parameter combination shown in (E) (denoted by white dots); A scatter plot of 

the predicted vs. the simulated data points from these maps is shown at the bottom.  
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Figure 3. Variability propagation in three-gene feedforward networks. 

(A) Description of the three-gene feedforward network models and definition of the 

phenotype of interest. The PPP (coherent) and PNP (incoherent) network types are 

considered. The quantitative phenotype of interest is the ratio of !"##(%&,%:) (or fold-

change (FC)) between the network with and without the Y-mediated feedforward; the goal 

of the analysis is to assess the function/effect of the Y feedforward arm. 

(B and C) Scatter plot of phenotypes, FC versus !"##(%&,%:) without Y for (B) PPP and 

(C) PNP; each dot corresponds to a single parameter combination sampled. Note that only 

parameter combinations with !"##(%&,%:) > 0.2 without Y are considered since FC is 

less robust and would diverge when !"##(%&,%:) without Y is near 0. The color scale 

denotes the distribution density reflecting the relative abundance of data points (see 

Methods for details). 

(D and E) GVI of the Random Forest ML model of FC for (D) PPP and (E) PNP. 

Permutation GVIs are shown. See Figures S5D and S5F for both permutation and impurity 

GVIs and a comparison between the two. 

(F) Illustrating the role of ; (;&(, ;(:, and ;&:), the level of upstream input needed to 

attain half maximal activation of the downstream gene, plays in tuning the propagation of 

variability/information. The input (upstream protein level) is illustrated as a distribution to 

depict variability over time within a single cell (or cell-to-cell variation at a given time-

point.) (red), this together with the relative value of K determine whether upstream 

variations are buffered or transmitted to effect downstream transcription. Left and right 

panels illustrate a positive and negative regulatory relationship, respectively, between the 

upstream gene and its downstream target gene.  



	

(G) Illustrating the main qualitative scenarios of variability propagation in the Y arm and 

the corresponding effect on the FC phenotype.  
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Figure 4. Information transmission and oscillatory behavior of a two-gene negative 

feedback network. 

(A) The two-gene negative feedback network model and the definition of the phenotypes 

of interest. Due to the bidirectional regulation between X and Y, peak cross-correlation can 

be considered with both positive and negative time lags (see Figure S6A). The phenotypes 

of interest for analyzing oscillatory behaviors include the quality factor (QF) and the peak 

frequency (PF) of the power spectra in the frequency domain of gene expression dynamics. 

Example trajectories of mRNAs X and Y are shown for a parameter combination exhibiting 

oscillations. 

(B and C) GVI of the RF regression model for (B) PF and (C) QF. Permutation GVIs are 

shown. See Figures S6G and S6H for both permutation and impurity GVIs. 

(D) Hierarchical clustered heatmap of parameter combinations (rows) with QF > 0.4. The 

color scale denotes the relative (z-score scaled) magnitude of the parameter value.   

(E) Distributions of QF obtained by stochastic simulation for each type of circuit behaviors 

classified by deterministic ordinary differential equation modeling; DO: damped 

oscillations, LC: limit cycle oscillations, and SS: stable steady states. 

(F) A selected parameter combination for local, in silico perturbation analysis (left) and its 

LVI for QF and PF (right; shown as a scatter plot). The two parameters being perturbed 

are circled in red.   

(G) Stochastic simulation result of QF as <(&  and ;(&  are perturbed starting from the 

parameter combination (denoted by a white dot) shown in (F). Here <(&  is varied 

continuously between the scaled/standardized values of -0.707 (corresponding to an 



	

original Hill coefficient of 1) and 0.707 (original Hill coefficient of 5). The color scale 

denotes QF.  

(H) The oscillatory behaviors predicted by deterministic modeling in the same parameter 

space shown in (G) (see Methods). Damped oscillation regions are depicted in pink and 

limit cycle oscillation regions are in green. The “oscillatory” region (defined as those with 

QF>0.4) predicted by stochastic modeling is shown in grey. 
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Figure S1. Motivation and conceptual framework. 

(A) Cell-to-cell gene expression heterogeneity is prevalent and can propagate from gene to 

gene across the gene regulatory network, giving rise to patterns of expression heterogeneity 

in the cell population that are potentially associated with cellular phenotypes. Given a 

biological network, our framework samples parameter combinations, conducts stochastic 

dynamical simulations to generate time series data sets from the network, builds machine 

learning (ML) models that connect parameter and phenotypic spaces, such as linking 

parameter values to cell-to-cell gene expression variations and gene-gene correlations 

across single cells. The ML models can be thought of as phenomenological solutions of 

the equations governing the stochastic dynamics of the network. They enable much faster 

computation of quantitative phenotypes from parameter combinations than using full-

blown simulations and a better understanding of how the system’s phenotypes are shaped 

by the parameters.  

(B) The MAPPA framework. Step 1: Model the system as a network of interacting 

molecular species; their interactions are governed by kinetic parameters; Step 2: Uniformly 

sample parameter combinations from the plausible parameter space and conduct 

mechanistic/stochastic simulation on each of the combinations and compute the 

quantitative phenotype(s) of interest from the simulation results; Step 3: Construct 

Parameter-Phenotype Maps (PPMs) by training ML models using the simulated dataset 

generated in the previous step; PPMs map parameters to phenotypes. The trained ML 

models can be tested using additional simulated data from parameter combinations distinct 

from those used to generate the training set. This process can be repeated to improve the 

PPM, for example, by increasing the representation of parameter combinations that lead to 



	

rare phenotypic values. The resultant ML models can be used to explore, in a 

computationally efficient manner, how parameter perturbations may change the phenotype 

and delineate which parameters contribute to controlling the phenotype, both globally 

throughout the parameter space or locally at specific neighborhoods of the parameter space. 
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Figure S2. (related to Figure 1) Simulation results and ML models for a two-gene 

network. 

(A) Distribution of !"##(%&,%()  from the simulations using the first, initial set of 

sampled parameter combinations (see Figure 1D left panel). Among the 76,532 parameter 

combinations simulated, only 315 had !"##(%&,%() > 0.7 with most exhibiting very low 

correlations.  

(B) Additional simulations were performed on parameter combinations sampled near those 

shown in (A) with high correlations. Here the distribution of !"##(%&,%() from both the 

initial and additional parameter combinations is shown; the inset shows that of the 

additional parameter combinations only. 

(C) The ML model training-testing scheme involving the initial (within the blue box) and 

additionally sampled (pink box; outside the blue box) data as described in (B). Each of the 

two data sets were divided into independent, non-overlapping training and testing sets. We 

trained 4 ML models (!"##(%&,%() ~ kinetic parameters (R notation)): two of which 

were RF regression models, one using the initial (blue box) and the other using the 

combined (pink box) training set; similarly, two RF classification models for categorical 

outcomes (high vs. low !"##(%&,%())	were trained (see Methods). Categorical labels for 

the classification models: ‘high’ if !"##(%&,%() > 0.7 or ‘low’ if !"##(%&,%() ≤0.7.  

(D) Scatter plot showing the predicted (y) vs. the simulated (x) phenotypic values. The RF 

regression model trained on the initial training set was used to predict the phenotypic value 

for the initial test set. The color scale denotes the distribution density reflecting the relative 

abundance of data points (see Methods for details). 



	

 (E) Same as (D) but showing the prediction performance of the RF regression models 

trained on the initial training set (red) and the combined training set (blue) in predicting 

the additional test set (enriching for parameter combinations with high	!"##(%&,%()). 

The color scale denotes the distribution density reflecting the relative abundance of data 

points (see Methods for details). 

(F) Prediction performance of the RF classification models (!"##(%&,%() > 0.7 vs. < 

0.7) evaluated using the combined test set, as indicated by the receiver operating 

characteristic (ROC) and precision-recall curves. Hollow circles correspond to data from 

the RF model trained using the initial training set, while solid circles are data from the RF 

model trained using the combined training set.  

(G) Impurity (y axis) vs. permutation (x axis) GVIs for the RF regression model trained on 

the combined training set are shown together in a scatter plot.  

(H) tSNE plot of all (initial and additional) parameter combinations colored by the cluster 

ID defined in Figure 1H.  
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Figure S3. (related to Figure 2) Comparison between ML model predictions and 

analytical approximations and in silico perturbation analysis of a two-gene network. 

(A) Scatter plot of !"##(%&,%() computed from analytical approximation (y axis) versus 

that from stochastic simulation in the entire dataset (both “initial” and “additional” – see 

Figure S2C). The color scale denotes the distribution density reflecting the relative 

abundance of data points (see Methods for details). 

(B) Heatmap of parameter combinations (rows) for which the analytical approximation 

deviate significantly from the simulation results (i.e., with the differences >  0.25 in 

!"##(%&,%()) The rows are sorted in increasing order of the difference of !"##(%&,%() 

between simulation and analytical approximation. 

(C and D) (C) Scatter plot and (D) corresponding time trajectories of mRNA X (%&) and 

mRNA Y (%() for a parameter combination (parameter key: 122315_AAAAAQFX) from 

the upper heatmap in Figure 2B. 

(E) Similar to Figure 2F but for perturbing 8?@&  and 8?@(  (parameters with lowest LVI) 

starting from the parameter combination (denoted by white dots) shown in Figure 2E. 
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Figure S4. (Related to Figure 3) Simulation results for three-gene feedforward 

networks. 

(A and B) Simulation results for (A) PPP and (B) PNP circuit types. (Left) Scatter plot 

showing the simulation results with (y axis) and without (x axis) the feedforward 

component (mediated by Y) for different parameter combinations (using the initial 

samples). Those with a difference in !"##(%&,%() of greater than 0.2 are labeled with 

red (increased with Y) or blue (decreased with Y). (Center) Simulation results for the 

additional parameter combinations. The red (blue) dots correspond to parameter 

combinations sampled around those that resulted in the red (blue) dots in the left panel. 

(Right) The same but showing both the initial and additional parameter combinations. The 

color scale denotes the distribution density reflecting the relative abundance of data points 

(see Methods for details). 

(C and D) Differences in the lag time (y) for achieving peak cross-correlations between 

the circuits with and without Y for (C) PPP and (D) PNP. PPP tends to lengthen time lags 

(Δ, < 0)  while PNP tends to shorten time lags (Δ, > 0) . For PNP, only parameter 

combinations with positive !"##(%&,%:) with Y were included for proper comparison 

between PPP and PNP. The color scale denotes the distribution density reflecting the 

relative abundance of data points (see Methods for details). 
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Figure S5. (Related to Figure 3) ML models for three-gene feedforward networks. 

(A) ML model training scheme (similar to Figure S2C). We trained RF regression models 

on the initial and the combined (initial and additional) training set for both network types 

and assessed prediction performance using the initial and the combined test set, 

respectively. For the rest of the analyses, including obtaining GVI and LVI and in silico 

perturbation experiments, ML models were trained using the combined training set. In the 

main figures we reported results from the combined dataset. 

(B and C) The prediction performance of the RF regression model for FC trained using 

the combined training sets for (B) PPP (#	 = 0.93) and (C) PNP (# = 0.91). The color 

scale denotes the distribution density reflecting the relative abundance of data points (see 

Methods for details). 

(D and F) Impurity and permutation GVIs are shown together for (D) PPP and (F) PNP. 

Ranks for highly important parameters are largely consistent between the impurity and 

permutation importance measures. 

(E and G) The LVI (from the ML model for FC) of the parameter combinations were 

clustered and the average values of each cluster is shown for (E) PPP and (G) PNP. The 

cluster number is shown in the color bar (Methods). 

(H) The specific parameter combination from PPP selected for local perturbation analysis, 

and its LVI (right panel). Avg. - average; OOB - out-of-bag. 

(I) Distributions of protein levels (D&, D(, and D:) (red) and the transfer functions (black 

curve – see Figure 3F) between the indicated upstream protein and downstream gene at the 

selected parameter combination. The shaded areas indicate the effective regulation regimes 

between the input (upstream protein) and output (transcription rate). 



	

 (J) Prediction (by RF model) and validation (based on stochastic simulations) for the 

perturbation on the two indicated parameters (x and y axes) starting from the selected 

parameter combination shown in (H). (Top) Prediction and simulation of phenotypic values 

(the two contour maps on the left), and a scatter plot comparing prediction and simulation 

for the given perturbations (right panel). The grey regions in the contour maps represent 

parameter combinations deemed biologically infeasible (Methods). The starting point 

(white dot) of the arrow is the parameter combination shown in (H), and the arrow indicates 

the shift in the transfer function (especially in the Hill coefficient) arriving at the second 

parameter combination (the end point of the arrow) as a result of the parameter perturbation; 

the bottom plot (similar to (I)) shows the changes in the transfer function between these 

two parameter combinations (indicated by the arrow) and how the second parameter 

combination allows higher transmission of variation (higher FC). 
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Figure S6 (related to Figure 4). Simulation results, nonlinear bifurcation behaviors, 

and ML models of the two-gene negative feedback network. 

(A) Simulation results showing peak cross-correlations between %& and %( with negative 

time lag (x axis – !"##(%&,%(); information flows from X to Y) vs. positive time lag (y 

axis – !"##(%(,%&) ; information flows from Y to X) for the sampled parameter 

combinations. Shown in the shaded region are those parameter combinations with 

comparable magnitudes of !"##(%&,%()  and !"##(%(,%&)  (defined as within two-

folds between the positive- and negative-lagged correlations), which potentially exhibiting 

oscillations. The example oscillatory trajectories shown in Figure 4A was generated from 

the parameter combination denoted by the white dot. The color scale denotes the 

distribution density reflecting the relative abundance of data points (see Methods for 

details). 

(B) Number of parameter combinations for each type of oscillatory behavior predicted by 

deterministic modeling; damped oscillations (DO), limit cycle oscillations (LC), and stable 

steady states (SS).  

(C) tSNE plot of the sampled parameter combinations colored by QF.  

(D) tSNE plot of the sampled parameter combinations colored by PF. See Methods for 

additional details on the logged unit of PF. 

(E) Scatter plot of predicted vs. simulated QF to illustrate the prediction performance of 

the RF regression model for QF. The color scale denotes the distribution density reflecting 

the relative abundance of data points (see Methods for details). 



	

(F) Scatter plot of predicted vs. simulated PF to illustrate the prediction performance of the 

RF regression model for PF. The color scale denotes the distribution density reflecting the 

relative abundance of data points (see Methods for details). 

(G and H) Impurity and permutation GVIs are compared and shown together in scatter 

plots for (G) PF and (H) QF. Ranks for the most important parameters are consistent 

between the two measures.  

(I and J) The LVI (from the RF regression model) of the parameter combinations were 

clustered and the average values of each cluster is shown for (I) QF and (J) PF (see 

Methods). The cluster number is shown in the color bar.  

(K) Comparison between ML prediction and stochastic simulation of QF as <(& and ;(& 

were perturbed starting from the selected parameter combination (denoted by white dots) 

shown in Figure 4F. We compared the discrete/qualitative behavior by dividing the space 

into four quadrants with high/low values for <(& and ;(& (shown in the middle) since the 

ML model was trained based on only two possible values of <(&, -0.707 (on the relative 

scale; the original Hill coefficient value is 1) and 0.707 (the original Hill coefficient value 

is 5)  (see Methods). The QF predicted by the ML model is shown on the left of the quadrant 

map and the actual simulation is shown on the right. The change in QF across the quadrants 

is qualitatively consistent between the simulation and the prediction (bottom plot). The full 

simulation result, as the two parameters were perturbed along the continuous range, is 

shown in Figure 4G. 

  

	



	

Supplementary Materials 

Glossary 

MAPPA: MAchine learning of Parameter-Phenotype Analysis - the name of our 

framework. 

Parameter space: Multidimensional space in which each dimension is defined by the 

biologically plausible range of each parameter. 

Phenotypes: The quantities reflecting specific aspects of dynamical or stationary 

behaviors of the model/system, which are defined and can be computed using 

dynamical/stochastic simulation results for each parameter combination. 

Phenotypic space: Multidimensional space defined by plausible ranges of each phenotype. 

PPM - Parameter-Phenotype Map: Quantitative relationship between parameter values 

and phenotypes of interest. In our work PPMs are fitted as ML (Machine Learning) models. 

GVI - Global Variable Importance: The relative contribution of a parameter for 

predicting phenotypes averaged over parameter combinations in the training set.  

LVI - Local Variable Importance: The relative contributions of a parameter for 

predicting phenotypes at a particular point in parameter space (i.e., at a specific parameter 

combination).  

SME - Stochastic or Chemical Master Equation: Equations describing the dynamic 

evolution of probability distribution of system states in chemical reaction networks.  

SSA  - Stochastic Simulation Algorithm: A simulation algorithm that generates dynamic 

trajectories of system states (e.g. the abundance of chemical species) in a chemical reaction 

network. The timing and type of reactions are determined probabilistically based on the 



	

current system state and kinetic parameters. Ensemble of time trajectories constitute time 

evolution of probabilities of states described by SMEs. 

PoV (Propagation of variation), information transfer, information propagation, 

transmission of information, transmission of variation: These terms were used 

interchangeably; they refer to the phenomenon that variation in gene expression across 

single cells (or dynamic fluctuations over time within single cells) can be propagated from 

gene to gene in gene regulatory networks. This can be captured by gene-gene correlations 

across single cells in a cell population (e.g., via singe cell transcriptomic data). 

PPP (see Figure 3A): A coherent feedforward circuit motif. X positively regulates Y (P). 

Y positively regulates Z (P). X positively regulates Z (P).  

PNP (see Figure 3A): An incoherent feedforward circuit motif– “incoherent” because Z 

is regulated by X and Y in opposite directions. X positively regulates Y (P). Y negatively 

regulates Z (N). X positively regulates Z (P).  

FC: Fold-change of !"##(%&,%() between PPP or PNP circuits with and without the Y 

feedforward arm. 

Transfer function: a mathematical (e.g., Hill) function describing how the activity of 

upstream transcription factors affects that of the downstream promotor/enhancer.  

QF  - Quality Factor: A quantity measuring the extent of oscillation in a system. 

PF - Peak Frequency: The dominant frequency of oscillation in a system identified as the 

most dominant peak in the power spectra (frequency domain analysis) obtained from 

dynamic trajectories. 

LC - Limit Cycle Oscillations: Persistent oscillations with a well-defined 

frequency/period. 



	

DO - Damped Oscillations: Transient oscillations followed by settling down to stable 

fixed states. 

SS - Stable Steady States: Evolution to fixed stable states without any transient 

oscillations. 

 

 

	  



	

Supplementary Text 

Learning the Parameter-phenotype map (PPM) of Stochastic Network Dynamics 

Given a stochastic gene network model and associated kinetic parameters, we seek to 

understand how the phenotypes of the system behave and change across the parameter 

space. Here, phenotypes can be any quantitative measures assessing certain aspects of the 

dynamical behavior of the given model. (Figure S1A). While the quantitative relationship 

between parameters and phenotypes in a given system can be mathematically complex, we 

hypothesize that the mapping can be captured quantitatively by interpretable ML models 

such as Random Forests (RF) in which the contribution of individual parameters to achieve 

accurate mapping can be delineated (39). For example, the gene expression dynamics of a 

network of genes and proteins in cells can be modeled by SMEs (Figure S1A). However, 

analytical solutions of non-linear SMEs (e.g., those with on-off promoter dynamics) are 

generally intractable and evaluating how parameters affect a phenotype of interest, e.g., the 

correlation between two genes over time (Figure S1A), rely on conducting computational 

simulations over a large number of parameter combinations. Here we sought to use ML 

models to learn the PPM.  

 MAPPA comprises three steps (Figure S1B). In step 1, we model a system as a 

network of interacting entities (e.g., proteins, mRNAs, cells), whose states/levels are 

governed by stochastic birth-death processes (e.g., transcript production and degradation). 

While still poorly measured, particularly in vivo, plausible ranges of some parameters can 

be obtained from the literature or approximated based on physical and/or biological 

constraints. Next, in step 2, using methods designed for uniform sparse sampling of high-

dimensional parameter spaces (Methods), we obtain parameter combinations from the 



	

plausible parameter space and conduct stochastic, dynamical simulations of the system 

using each one of the parameter configuration samples. We then compute quantitative 

phenotypes of interest (here we focus on correlation of expression between genes in single 

cells, but the MAPPA approach is applicable to any phenotypes/modeling combinations) 

to obtain an in-silico dataset that links parameter values to phenotypes for the sparse sample 

of values. In the final and critical step (step 3), we train a ML model that quantitatively 

maps parameters to phenotypes, and we evaluate the predictive performance of the model 

by using parameter combinations not used in the training set. Using this approach, we can 

utilize arbitrarily large training and testing sets with size limited only by computational 

capacity. Any good ML approach generating interpretable models can in principle be used, 

here we use RF because it: 1) has good ML performance (40), 2) can capture non-linear 

relationships between parameters and phenotypes, and 3) can delineate parameter 

importance both locally or globally (i.e., which parameters contribute to phenotypic 

variations at or independent of a specific location in parameter space, respectively).  

Once we have a predictive ML model, we can use it as a “phenomenological” solution of 

the SME to efficiently predict phenotypes from parameters without using computationally 

intensive simulations (Figure S1A). Guided by dimensionally-reduced visualizations and 

information on which parameters contributed to prediction, we can further evaluate the 

system and test our understanding by in-silico perturbation analysis, e.g., by assessing how 

well we can predict phenotypic changes as the parameter values are altered (Figure S1B). 

These interactive, exploratory assessments are efficiently enabled by the ML model 

without full stochastic simulations; they can further help reveal the design principles of the 

systems and suggest parameter optimization strategies to attain specific phenotypes in 



	

synthetic gene circuits (41). To illustrate these use cases, we have developed an interactive 

website to allow the exploration of PPMs we analyzed (https://phasespace-

explorer.niaid.nih.gov). 

  



	

Methods 

Model Description 

Here we describe variables, parameters, and reactions constituting our models in Figures 

1A, 3A, and 4A. 

 

Model variables 

The chemical species (or variables) used in this study are as follows (Figures 1A, 3A, and 

4A): 

)*
&: Gene X with an “active” promoter (on-state) 

)+
&: Gene X with an “inactive” promoter (off-state) 

%&: mRNA transcribed from gene X 

,&: Protein translated from mRNA X 

)*
(: Gene Y with an “active” promoter (on-state) 

)+
(: Gene Y with an “inactive” promoter (off-state) 

%(: mRNA transcribed from gene Y 

,(: Protein translated from mRNA Y 

)*
-: Gene Z with an “active” promoter (on-state) 

)+
-: Gene Z with an “inactive” promoter (off-state) 

%-: mRNA transcribed from gene Z 

,-: Protein translated from mRNA Z 

 

Kinetic parameters 



	

The range of the kinetic parameters (Table S1) was obtained from the experimental 

literature (18, 42–47), similar to what we did in our previous work (12). We summarized 

the prior experimental findings into biologically feasible ranges for each parameter (Table 

S1). Based on the reported range of copy numbers of transcription factors (TFs) and 

correlations between protein copy numbers and other quantities such as translation rate 

constants (47, 48), we obtained modified ranges of the transcription and translation rate 

constants, which were applied to upstream genes acting as TFs in the models (Table S1). 

 Over the course of the model development across different network motifs, we 

tested different ways to specify K (which can be interpreted as the level of the upstream 

TF needed to achieve the half maximum rate of transcription) when sampling parameter 

combinations. For the two-gene network (Figure 1), K was fixed to a single value as in our 

previous work (Table S2)(12), while for other circuit motifs (Figures 3 and 4), K was not 

fixed. For the two-gene negative feedback network (Figure 3), the unit of K was the copy 

number, which is the same as that for proteins (Table S4). For the three-gene feedforward 

networks, we tested specifying K as a relative quantity, namely as a ratio to the mean copy 

number of the upstream TF estimated from the corresponding deterministic model at steady 

state (Table S3). For downstream analyses including ML model training and visualizations, 

we decided to make the unit of K consistent across models as the relative ratio, and thus 

we converted the unit of K in the two-gene negative feedback network copy number to the 

relative ratio. Observing that the resultant values of K span several orders of magnitude 

(1001~101), we applied the base-10 logarithm transformation, resulting in K spanning the 

range -4 to 4. 

 



	

Chemical reactions and the deterministic dynamics for each system 

The following biochemical reactions are modeled in the two-gene network (Figure 1B). 

Reaction Description Propensity 
)+
& ⟶ )*

& Promoter activation of gene X 456
& ∙ )+

& (1)	
)*
& ⟶ )+

& 
Promoter deactivation of gene 

X 
4599
&

∙ )*
& (2)	

)*
& ⟶ )*

& +%& 
mRNA X production: 

Transcription of gene X 4<
& ∙ )*

& (3)	

%& ⟶ %& + ,& 
Protein X production: 

Translation of mRNA X 4<
& ∙ %& (4)	

%& ⟶ ∅ Degradation of mRNA X @<
& ∙ %& (5)	

,& ⟶ ∅ Degradation of protein X @B
& ∙ ,& (6)	

)+
( 		⟶ )*

( Promoter activation of gene Y 456
( ∙ )+

( (	7)	
)*
( 		⟶ )+

( 
Promoter deactivation of gene 

Y 
4599
(

∙ )*
( (8)	

)*
( + ,& ⟶ )*

( + ,& +%( 
mRNA Y production: 

Transcription of gene Y )*
( ∙ 4<

( ∙
,&

6GH

I&(
6GH + ,&

6GH
(9)	

%( ⟶ %( + ,( 
Protein Y production: 

Translation of mRNA Y 4<
K ∙ %( (10)	

%( ⟶ ∅ Degradation of mRNA Y @<
( (11)	

,( ⟶ ∅ Degradation of protein Y @B
( ∙ ,( (12)	

The following equations are deterministic descriptions of the reactions above using 

ordinary differential equations:  

@%&

@L
=

456
&

456
& + 4

599
&

∙ 4<
& − @<

& ∙ %& (13)	

@,&

@L
= 4B

& ∙ %& − @B
& ∙ ,& (14) 

@%(

@L
=

456
(

456
( + 4

599
(

∙
,&

6GH

I&(
6GH + ,&

6GH
∙ 4<

( − @<
( ∙ %( (15) 

@,&

@L
= 4B

( ∙ %( − @B
( ∙ ,(. (16) 

Stationary states can be estimated by setting derivatives in the left-hand side of equations 

above equal to zero, resulting in the following expressions: 

%&PPPP =
456
&

456
& + 4

599
&

∙
4<
&

@<
&
, (17) 



	

,&PPP =
4B
&

@B
&
∙ %&PPPP, (18) 

%(PPPP =
456
(

456
( + 4

599
(

∙
,&PPP

6GH

I&(
6GH + ,&PPP

6GH
∙
4<
(

@<
(
, (19) 

,(PPP =
4B
(

@B
(
∙ %(PPPP. (20) 

The following reactions describe the elements of the three-gene feedforward 

networks (PPP and PNP) (Figure 3A). 

Reaction Description Propensity 

)+
& ⟶ )*

& 
Promoter activation of 

gene X 456
& ∙ )+

& (21) 

)*
& ⟶ )+

& 
Promoter deactivation of 

gene X 
4599
&

∙ )*
& (22) 

)*
& ⟶ )*

& +%& 
mRNA X production: 

Transcription of gene X 4<
& ∙ )*

& (23) 

%& ⟶ %& + ,& 
Protein X production: 

Translation of mRNA X 4<
& ∙ %& (24) 

%& ⟶ ∅ Degradation of mRNA X @<
& ∙ %& (25) 

,& ⟶ ∅ Degradation of protein X @B
& ∙ ,& (26) 

)+
( 		⟶ )*

( 
Promoter activation of 

gene Y 456
( ∙ )+

( (27) 

)*
( 		⟶ )+

( 
Promoter deactivation of 

gene Y 
4599
(

∙ )*
( (28) 

)*
( + ,&
⟶ )*

( + ,& +%( 
mRNA Y production: 

Transcription of gene Y )*
( ∙ 4<

( ∙
,&

6GH

I&(
6GH + Q&

6GH
(29) 

%( ⟶ %( + ,( 
Protein Y production: 

Translation of mRNA Y 4<
K ∙ %( (30) 

%( ⟶ ∅ Degradation of mRNA Y @<
( ∙ %( (31) 

,( ⟶ ∅ Degradation of protein Y @B
( ∙ ,( (32) 

)+
- ⟶ )*

- 
Promoter activation of 

gene Z 
456
- ∙ )+

- (33) 

)*
- ⟶ )+

- 
Promoter deactivation of 

gene Z 
4599
-

∙ )*
- (34) 

)*
- + ,& + ,( 

⟶)*
- + ,& + ,(

+%- 

mRNA Z production: 
Transcription of gene Z  

)*
- ∙ 4<

- ∙
BG

RGS

TGS
RGSUBG

RGS
∙

BH
RHS

THS
RHSUKH

RHS
; PPP (35)  

)*
- ∙ 4<

- ∙
BG

RGS

TGS
RGSUBX

RGS
∙

THS
RHS

THS
RHSUBH

RHS
; PNP (36)  

%- ⟶ %- + ,- 
Protein Z production: 

Translation of mRNA Z 4<
- ∙ %- (37) 

%- ⟶ 	∅ Degradation of mRNA Z @<
- ∙ %- (38) 

,- ⟶ 	∅ Degradation of protein Z @B
- ∙ ,- (39) 

The deterministic descriptions are: 



	

@%&

@L
=

456
&

456
& + 4

599
&

∙ 4<
& − @<

& ∙ %&, (40)	

@,&

@L
= 4B

& ∙ %& − @B
& ∙ ,&, (41)	

@%(

@L
=

456
(

456
( + 4

599
(

∙
,&

6GH

I&(
6GH + ,&

6GH
∙ 4<

( − @<
( ∙ %(, (42)	

@,(

@L
= 4B

( ∙ %( − @B
( ∙ ,(, (43)	

@%-

@L
=

⎩
⎪
⎨

⎪
⎧

456
-

456
- + 4599

-
∙

,&
6GS

I&-
6GS + ,&

6GS
∙

,(
6HS

I(-
6HS + ,(

6HS
∙ 4<

- − @<
- ∙ %-; PPP

456
-

456
- + 4599

-
∙

,&
6GS

I&-
6GS + ,&

6GS
	 ∙

I(-
6HS

I(-
6HS + ,(

6HS
	 ∙ 4<

- − @<
- ∙ %-; PNP

, (44)	

@,-

@L
= 4B

- ∙ %- − @B
- ∙ ,-. (45)	

Stationary states were obtained as follows: 

%&PPPP =
456
&

456
& + 4

599
&

∙
4<
&

@<
&
, (46)	

,&PPP =
4B
&

@B
&
∙ %&PPPP, (47)	

%(PPPP =
456
(

456
( + 4

599
(

∙
,&PPP

6GH

I&(
6GH + ,&PPP

6GH
∙
4<
(

@<
(
, (48)	

,(PPP =
4B
(

@B
(
∙ %(PPPP, (49)	

%-PPPP =

⎩
⎪
⎨

⎪
⎧

456
-

456
- + 4599

-
∙

I&-
6GS

I&-
6GS + ,&

6GS
	 ∙

,(PPP
6HS

I(-
6HS + ,(PPP

6HS
∙
4<
-

@<
-
; PPP

456
-

456
- + 4599

-
∙

,&PPP
6GS

I&-
6GS + ,&PPP

6GS
	 ∙

I(-
6HS

I(-
6HS + ,(PPP

6HS
∙
4<
-

@<
-
; PNP

, (50)	

,-PPP =
4B
-

@B
-
∙ %-PPPP. (51)	



	

 The following reactions describe the elements of the two-gene negative feedback 

network (Figure 4A). 

Reaction Description Propensity 
)+
& ⟶ )*

& Promoter activation of gene X 456
& ∙ )+

& (52) 
)*
& ⟶ )+

& Promoter deactivation of gene X 4599
&

∙ )*
& (53) 

)*
& + ,( ⟶ )*

& + ,( +%& 
mRNA X production: 

Transcription of gene X )*
& ∙ 4<

& ∙
I(&

6HG

I(&
6HG + ,(

6HG
(54) 

%& ⟶ %& + ,& 
Protein X production: 

Translation of mRNA X 4<
& ∙ %& (55) 

%& ⟶ ∅ Degradation of mRNA X @<
& ∙ %& (56) 

,& ⟶ ∅ Degradation of protein X @B
& ∙ ,& (57) 

)+
( 	⟶ )*

( Promoter activation of gene Y 456
( ∙ )+

( (58) 
)*
( 	⟶ )+

( Promoter deactivation of gene Y 4599
( (59) 

)*
( + ,& ⟶ )*

( + ,& +%( 
mRNA Y production: 

Transcription of gene Y 
)*
( ∙ 4<

( ∙
,&

6GH

I&(
6GH + ,&

6GH
(60) 

%( ⟶ %( + ,( 
Protein Y production: 

Translation of mRNA Y 4<
K ∙ %( (61) 

%( ⟶ ∅ Degradation of mRNA Y @<
( (62) 

,( ⟶ ∅ Degradation of protein Y @B
( ∙ ,( (63) 

Corresponding deterministic descriptions of reactions are: 

@%&

@L
=

456
&

456
& + 4

599
&

∙
I(&

6HG

I(&
6HG + ,(

6HG
	 ∙ 4<

& − @<
& ∙ %&, (64) 

@,&

@L
= 4B

& ∙ %& − @B
& ∙ ,&, (65) 

@%(

@L
=

456
(

456
( + 4

599
(

∙
,&

6GH

I&(
6GH + ,&

6GH
∙ 4<

( − @<
( ∙ %(, (66) 

@,(

@L
= 4B

( ∙ %( − @B
( ∙ ,(. (67) 

The corresponding stationary states are:  

%&PPPP =
456
&

456
& + 4

599
&

∙
I(&

6HG

I(&
6HG + ,(PPP

6HG
∙
4<
&

@<
&
, (68) 

,&PPP =
4B
&

@B
&
∙ %&PPPP, (69) 

%(PPPP =
456
(

456
( + 4

599
(

∙
,&PPP

6GH

I&(
6GH + ,&PPP

6GH
∙
4<
(

@<
(
	, (70) 



	

,(PPP =
4B
(

@B
(
∙ %(PPPP. (71) 

Sampling of Parameter Combinations 

To obtain the system’s phenotypic behavior throughout the biologically plausible 

parameter space, our strategy was to sample parameter combinations unbiasedly (but 

sparsely to keep computational cost reasonable). 

 We first used a simple ‘uniform grid scheme’ for the two-gene network and the 

two-gene negative feedback network. The range of each parameter was divided into 

discrete points uniformly in the original or logarithmic scales based on the range of each 

parameter determined by the distribution reported in the literature (43, 47). Then, we 

sampled parameter combinations by randomly selecting a value out of the grid points for 

each parameter. For the two-gene network, for example, it has 1010 possible parameter 

combinations since each of the 10 parameters was divided into 10 grid points; there a total 

of 105 parameter combinations were sampled (Tables S2). For the two-gene negative 

feedback network having 12 parameters total, 8, 2, and 2 were divided into 10, 5, and 2 

grid points, respectively, resulting in a total of 1014 possible parameter combinations 

(Tables S4).  

 Second, we used the ‘Sobol’ sampling scheme for the three-gene feedforward 

networks due to the larger number of parameters. The Sobol’ sequence is a low-

discrepancy sequence, which fills the unit interval (0,1) more evenly than a pseudorandom 

sequence (49), thus is appropriate for our goal of sampling parameter combinations as 

uniformly as possible in the high-dimensional parameter space. Using a Sobol’ sequence 

generator implemented in the randtoolbox package in R, a 16-dimensional Sobol’ sequence 

of 105 points filling a (0,1)16 hypercube was generated. Then, this sequence was rescaled 



	

linearly in the original or logarithmic scales to fit the parameter ranges previously specified 

for the three-gene feedforward networks (Table S3). To further specify the network type 

(out of the 8 possible types (22)) for each of parameter combinations, we added a sign 

(positive and negative) to the Hill coefficients and randomly assigned either a + or – to ^&(, 

^(- , and ^&- , respectively, where the +/- signs represent positive and negative 

regulation/influence on downstream promoters, respectively. Thus, either activating or 

repressive Hill functions were used based on the sign of the Hill coefficients during 

simulations. In the main text/analysis, we only considered two of the most prevalent types 

(PPP and PNP; Figure 3A).   

 We also note that Latin hypercube sampling is another possible scheme, although 

we did not use in our current work (50). In the context of global sensitivity analysis, it has 

been reported that both the Sobol’ sequence and the Latin hypercube work better than 

pseudorandom sequence, but the relative performance between Sobol and Lain hypercube 

is less clear (50–52). 

 

Parameter key: Each of the sampled parameter combination was assigned a unique key 

to make it easily identifiable. The basic syntax for parameter keys is [date of 

sampling]_[letter combinations] (e.g., 111315_AAAAENMF). 

 

Additional Sampling Around Specific Parameter Neighborhoods 

Once simulations for the uniformly sampled parameter combinations were conducted for 

the two-gene and three-gene feedforward networks (Figures 1 and 3) and phenotypes of 

interest were computed, we sought to obtain a more detailed picture around the regions of 



	

the parameter space that exhibit interesting but rare phenotypic states (e.g., high 

correlations between the genes in the two-gene network). We thus sampled additional 

parameter combinations around those regions, conducted simulations for these 

combinations, and augmented this additional data for training new ML models (see Figures 

S2C and S5A).  

 The detailed method we implemented is as follows. First, parameter combinations 

exhibiting phenotypic states of interest were selected. Second, for each parameter 

combination of interest, the sub-range of detailed sampling for each parameter was created 

(with 1/10 the width of the original parameter range and centered at its value in the 

parameter combination). Third, additional parameter combinations were sampled on these 

sub-ranges using the uniform grid sampling scheme or the Sobol’ sampling scheme as 

described above. Finally, we conducted stochastic simulations for these new parameter 

combinations and computed the phenotypes of interest based on the simulation results. 

Note that for the three-gene feedforward circuit motifs, the parameter combinations for 

additional sampling were chosen based on a hard cutoff: we selected those whose 

!"##(%&,%() in the circuit with Y differ from that without Y by least 0.2 (Figures S4A-

B). This was chosen qualitatively through visual inspection of the left panels of Figures 

S4A and S4B to enrich for parameter combinations in the off-diagonal regions. 

 

Stochastic Simulation Scheme 

As mentioned in the main text, we used Gillespie’s Stochastic Simulation Algorithm (SSA) 

to generate dynamic trajectories for each of the parameter combinations (16). To save space 

for data storage, we stored the simulation data once every 5 minutes. To ensure that the 



	

copy numbers of mRNAs and proteins stay within biologically feasible ranges, we applied 

a filtering step before starting simulations, such that only parameter combinations for 

which the estimated mean (steady-state) copy numbers of mRNAs and proteins of genes 

do not exceed 1,000 and 2,000,000 copies, respectively, can proceed to simulation (47, 48).   

We used the following procedure to obtain stationary time trajectories. First, we 

estimated the time scale under which the system would fluctuate around the mean copy 

number of chemical species based on deterministic differential equations. Each chemical 

species fluctuates differently in accordance with the “firing” rates of the chemical species 

and the slowest reactions determine the overall timescale of fluctuation. For proteins and 

mRNAs, the contributors to the firing rate are degradation and synthesis rates. The mean 

firing rate can be estimated as: 

_# = 4 + @ ∙ `̅ = 2 ∙ @ ∙ `̅, (72)		

where fr: the firing rate, k: the synthesis rate, d: the degradation rate, `̅: the mean copy 

number of the species; since 4 = @ ∙ `̅ in the stationary state, we have an expression that 

depends only on the degradation rate and the mean copy number. Assuming this firing 

occurs as a Poisson process, the variance of the number of firing events per unit time is 

also the firing rate itself. We can define a time scale, b9 as: 

b9 ≡
`̅

_#
=

1

2 ∙ @
. (73) 

This as a mean time interval during which the variance of the number of firing events is 

the same as the mean copy number of the chemical species, which can be interpreted as the 

time it takes to randomize the system such that the “information/memory” about the copy 

number is lost after this time interval. A related interpretation is that the waiting time of 

the Poisson process is exponentially distributed with mean waiting time for a single firing 



	

event being the inverse of the firing rate (1/(2 ∙ @ ∙ `̅)), thus it would take on average b9 

units of time for `̅ firing events to occur. For promoters, for example, b9 can be estimated 

as 1/4599  or 1/456 . The maximum of b9  among all chemical species, b9,<*e , can be 

considered as a good approximation of the time scale of fluctuation for the system. To 

obtain a stationary time trajectory of the system, a simulation needs to span multiple 

intervals of b9,<*e to allow the system to explore distinct regions of the state space. This 

argument is supported by theoretical studies, for example, see (14, 53). 

 Having defined the time scale of fluctuation, b9,<*e, given system with a particular 

parameter combination, we divided the simulation into two phases: 1) a burn-in phase with 

a duration of 4 ∙ b9,<*e and 2) the main phase with duration of multiples of 20 ∙ b9,<*e (see 

below). The simulation begins with the burn-in phase with the initial condition of zero 

copies for mRNAs and proteins and inactivated states for promoters, which allows the copy 

numbers of each species to build up to or near the stationary values; the data from the burn-

in phase is discarded in later analyses. Then, the main phase begins and generates time 

trajectories of each molecular species until the stationary test is passed (see below) or a 

time limit, L<*e, is reached. Only the trajectories that passed the stationary test were used 

for downstream analyses. 

The stationary test was conducted after every 20 ∙ b9,<*e  and the test was 

performed using only the last 2/3 of the data/trajectories (partly to mitigate the risk that the 

copy number did not yet reach near the steady-state values) and consisted of two steps. In 

the first step, the mean values of two halves of the data (latter 2/3) were compared. If the 

difference between the two values is less than a cut-off (expressed as a percentage of the 

mean value of the first half of the data), then the second step is applied. If not, the 



	

simulation would continue for another 20 ∙ b9,<*e. In the second step, we used the KPSS 

test (54) to evaluate stationarity for higher order moments since the phenotypes of interest 

involved cross-correlations and power spectra involving second moments. We stopped the 

simulation if the generated trajectory passed the test or continued for another 20 ∙ b9,<*e if 

it failed the test. 

 

Machine Learning Scheme 

We used Random Forests (RF) (39) to train machine learning (ML) models that learn the 

nonlinear relationships between parameters and phenotypes. We combined each parameter 

combination with its phenotype computed from the simulations (e.g., correlations between 

mRNAs X and Y) to form a data table; we then partitioned the data into training and test 

sets with the ratio of ~4:1 and only the training set was used in fitting the model. The 

function randomForest in the R package randomForest was applied to the training set to 

construct an ensemble of 500 decision trees (39). Once trained, we tested the ML model 

using the unseen test set. The prediction performance of the ML model was shown as 

Receiver Operator Characteristic (ROC) and recall-precision curves for classification ML 

models (the area under these curves (AUC) was used as the quantitative metric), and the 

Pearson correlation coefficient between the predicted and simulated values was used for 

the RF regression based ML models (for predicting continuous values such as gene-gene 

correlation). For GVI, LVI, and in-silico parameter perturbation analyses, we trained ML 

models by using the entire data set (i.e., combining the training and test sets) for maximal 

performance since our goal is to predict the effect of unseen perturbations followed by 

evaluation by additional stimulations.  



	

 For the two-gene (Figure 1) and three-gene feedforward (Figure 3) networks, to 

evaluate whether the use of additional samples drawn nearby the parameter combinations 

exhibiting desirable phenotypes (see above) can lead to improved prediction accuracy, we 

first trained ML models using only the “initial” data (without additional samples) and used 

the “combined” data (with additional samples) to train another model (Figures S2C and 

S5A). We saw that the performance of the combined ML models was indeed better (or at 

least comparable to) than that of the initial ML models (Figures S2E-F, data not shown for 

the three-gene feedforward networks). We thus used combined ML models for the rest of 

analyses, including the determination of GVIs and LVIs and in the in-silico perturbation 

experiments. 

 We used RF regression models for continuous value phenotypes. To address the 

inherent bias of RF regression (55, 56), we applied a bias correction method for all ML 

regression models we trained in this study (56). Briefly, we trained additional models for 

the “error” or the residuals f − fg, where y is the phenotypic value from the training set and 

fg  is the value predicted by the uncorrected, original RF regression model. The bias-

corrected predictions were obtained by adding the predicted corrections from the residual 

ML model.  

 

Variable Importance 

The randomForest package in R generates variable importance both at the global level 

(global variable importance (GVI), which can be thought as average over all data points in 

training sets) and in the local level (local variable importance (LVI)) for each individual 

data point in the training sets with the ‘importance’ and ‘localImp’ options turned on, 



	

respectively (39, 57). Two types of global variable importance were computed: 

permutation and impurity GVIs. The permutation GVI is generated based on the increase 

in the out-of-bag prediction errors (using the training set only) after randomly permuting 

each input variable. The impurity GVI is generated by measuring the total decrease in the 

node “impurity” (which quantifies the heterogeneity/entropy of the outcomes underneath 

each tree node; Gini index is used for categorical outcome variables and the residual sum 

of squares for continuous outcome variables) conferred by each variable in the training set. 

LVI is the increase in the out-of-bag prediction error on a specific data point of the training 

set (thus a particular point in the parameter space) after permuting each of the input 

variables. The permutation GVI was generated by averaging the LVIs from all data points. 

Although GVI gives a general overview, the variable importance can differ across 

parameter space as captured by the LVI. We grouped the individual LVIs (at each point in 

the parameter space) by hierarchical clustering and visualized the resulting clusters using 

tSNE plots, and used them to guide in-silico perturbation experiments. 

 For the hierarchical clustering heatmaps (Figures 1H, S5E, S5G, S6I, and S6J), we 

showed the average values of LVIs for each cluster rather than showing all LVIs for 

individual parameter combinations. The number of clusters were chosen based on visual 

inspection of the original heatmaps to allow visualization of major patterns capturing the 

full qualitative diversity of the LVIs. Detailed heatmaps showing all LVIs can be generated 

on our website (https://phasespace-explorer.niaid.nih.gov). 

  

tSNE Visualization and Embedding of Additional Samples 



	

We used t-distributed stochastic neighbor embedding (tSNE), a technique for 

dimensionality reduction, to visualize high-dimensional parameter spaces. We first 

generated a reference tSNE plot in 2D space using the original sampled parameter 

combinations. Since the tSNE algorithm does not provide a general parameterized 

transformation from higher to lower dimensional spaces, adding additionally sampled 

parameter combinations (see above) to an existing visualization requires a new tSNE plot. 

Thus, we implemented a customized algorithm for embedding additional points in an 

existing tSNE plot by following Appendix D of Berman	et	 al. (58) and applied it for 

generating Figure 1E. The procedure is briefly summarized below. 

 Starting with a lower dimensional tSNE embedding, h , of the original high 

dimensional data, i , where i  and h  are matrices, and the rows in them, j+  and f+ , 

correspond to individual data points with k = 1, 2, … , m, with m being the number of data 

points. Then, for an additional high-dimensional point (with the same dimension as i),  n, 

we want to obtain lower dimensional embedding, o (with the same dimension as h), on 

the reference embedding, h. To accomplish this, as in the tSNE algorithm, we first defined 

transition probabilities as 

,ep|r =

exp v−
‖j+ − n‖

x

2yx
z

∑ exp v−
‖j| − n‖

x

2yx
z|

, (74) 

}~p|� =
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∑ (1 + ‖f| − o‖
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, (75) 

where ‖⋯‖ denotes the Euclidian norm of a vector inside, and y is related to the 

perplexity, P, a parameter used in the tSNE algorithm, roughly equivalent to the number 

of nearest points that z can perceive as specified by the following relation,  



	

−Ç,eÉ|r logx ,eÉ|r

á

= logx Q . (76) 

These transition probabilities reflect the similarity between the existing data points and 

the additional point we would like to embed. Next, the lower dimensional coordinates, o, 

was obtained by minimizing the Kullback-Leibler divergence between ,ep|r and }~p|r, 

Ià(,||}) by tuning each component of o as:  

o∗ = argmin
�

Ià(,||}) = argmin
�

Ç,ep|r log è
,ep|r

}~p|�
ê

+

. (77) 

 

Analytical linear noise approximation of the correlation between mRNAs X and Y in 

the two-gene network  

We derived an analytical approximation of !"##(%&,%~) by following the approach of 

Elf and Ehrenberg (14) and Paulsson (17). With stationary assumption and linearization of 

the SMEs describing the system, the following relationship (a Lyapunov matrix equation) 

can be derived, 

ë ∙ ! + ! ∙ ëí + ì = 0, (78)	

where ë: the Jacobian of the deterministic equations, !: the covariance matrix, and ì: the 

diffusion matrix. ë and ì at the stationary state were obtained as: 
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obtained by solving stationary equations in the Model Description above. Then, the 

covariance matrix, !, was obtained by solving the matrix equation (Eq. 78) with elements 

!+á with indices k and û (1, 2, 3, 4, and 5 corresponding to the variables, )*&, %&, ,&, )*(, 

and %(): 

!ÄÄ = ü1 − )*
&† ∙ )*

&, (81) 

!Äx = !ÄÄ ∙
%&

)*
&
∙

@<
&

456
& + 4

599
& + @<

&
, (82) 

!xx = %& + !ÄÄ ∙
%&

x

)*
&
x
∙

@<
&

456
& + 4

599
& + @<

&
, (83) 

!Ä° = !ÄÄ ⋅
,&

%&

⋅
@B
&

456
& + 4599

& + @B
&
, (84) 

!x° = !Ä° ⋅
%&

)*
&
⋅

@<
&

@<
& + @B

&
+ !xx ⋅

,&

%&

⋅
@B
&

@<
& + @K

&
, (85) 

!°° = ,& + !Ä° ⋅
,&

)*
&
⋅

@<
&

@<
& + @B

&
+ !xx ⋅

,&
x

%&

x
⋅

@B
&

@<
& + @B

&
, (86) 

!Ä1 = !x1 = !°1 = 0, (87) 

!11 = ü1 − )*
(† ∙ )*

(, (88) 



	

!Ä£ = !Ä° ⋅ (1 − ö) ⋅ ^&( ⋅
%(

,&
⋅

@<
(

456
& + 4

599
& + @<

(
, (89) 

!x£ = !Ä£ ⋅
%&

)56
&
⋅

@<
&

@<
& + @<

(
+ !x° ⋅ (1 − ö) ⋅ ^&( ⋅

%(

,&
⋅

@<
(

@<
& + @<

(
, (90) 

!°£ = !x£ ⋅
,&

%&

⋅
@B
&

@B
& + @<

(
+ !°° ⋅ (1 − ö) ⋅ ^&( ⋅

%(

,&
⋅

@<
(

@B
& + @<

(
, (91) 

!1£ = !11 ⋅
%(

)*
(
⋅

@<
(

456
( + 4

599
( + @<

(
, (92) 

!££ = %( + !°£ ⋅ (1 − ö) ⋅ ^&( ⋅
%(

,&
+ !1£ ⋅

%(

)*
(
, (93) 

Finally, the analytical approximation of !"##(%&,%() was obtained as: 

!"##(%&,%() =
!x£

§!xx ∙ !££

, (94) 

where !xx and !££ are the variances of mRNA X and mRNA Y, respectively.  

Further expansion of the covariance between mRNAs X and Y, !x£, revealed: 
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where • = ü1 − )*
&† ⋅ %( ⋅ (1 − ö) ⋅ ^&(, showing 

¶ß
H

¶ß
GU¶ß

H
 as one of the main 

contributors to !"##(%&,%() according to this analytical treatment. 

 



	

Deterministic modeling of the two-gene negative feedback circuit: Bifurcation 

analysis at a fixed point 

We explored the phase space and bifurcation behaviors of the two-gene negative feedback 

circuit (Figure 4) (29).  Our goal is to delineate, using deterministic modeling only based 

on the Model Description above, whether a given parameter combination would result in 

damped oscillation, limit cycle oscillation, or stable steady state. First, the fixed points (i.e., 

%&, ,&, %(, and ,() were obtained for each of parameter combinations by solving the 

stationary equations numerically shown in the Model Description above. Then, the 

Jacobian ë at the fixed point was obtained as: 
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The eigenvalues ®  of the Jacobian ë  at the fixed point were obtained by solving the 

characteristic equation of ë: 
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( = 0. (99)	

Depending on the parameter combination, this equation can have: 1) four real negative 

roots, 2) two real negative and two complex roots, or 3) four complex roots. Since the 

analytical approach for solving fourth degree polynomial equations is complex, we 



	

numerically solved this equation for each of the parameter combinations. More thorough 

treatment of four-dimensional Hopf bifurcation can be found in Asada and Yoshida (59).  

 The nature of the eigenvalues obtained for each parameter combination determine 

the behaviors of the circuit (29, 60). First, if the eigenvalues are all real and negative, then 

the system evolves to and settles at the stable fixed point (%&, ,&, %(, and ,(). Second, if 

the eigenvalues include a pair or two pairs of complex values with negative real part, then, 

the system exhibits damped oscillation, eventually settling down to the stable fixed point. 

Lastly, if the eigenvalues include a pair of complex conjugates with positive real part, then 

the system exhibits limit cycle oscillations (Figures 4E and S6B). Note that it is impossible 

that the eigenvalues include two pairs of complex conjugates with positive real parts since 

the sum of all eigenvalues should be negative (i.e., ∑®+ = −ó@<
& + @B

& + @<
( + @B

(ò < 0). 

 

Power Spectral Analysis 

The oscillatory behavior in the two-gene negative feedback network can be described in 

the frequency domain using power spectra analysis of the time trajectories. Power spectra 

were obtained by Fourier transformation of the auto-correlation functions or cross-

correlation functions as proven by the Wiener-Khinchin theorem (15). Ideally, we need a 

large number of realizations of the time trajectories to obtain the power spectra. However, 

here (and often in practice) we only have a single time trajectory and thus noise can be an 

issue. There are several methods to reduce such noise, including the averaging of multiple 

estimates from segments of the original trajectories and applying window functions for 

Fourier transformations (61). We employed both strategies together. We divided single 

time trajectories into multiple segments, applied Welch’s methods implemented in the sapa 



	

package in R to each of those segments, and averaged over multiple estimates. Based on 

the resolution needed and computation time, we set a limit on the length of the segment to 

not exceed 105 time-points, which corresponds to ~8333 hours (105 × 5 minutes) in the 

system’s time. Thus, this approach would miss anything that occurs in longer timescales 

or shorter than 5 minutes (the data acquisition time interval), which were not captured in 

the current power spectral analysis. 

 The unit of frequency in power spectra analysis is 1	´^kL	 =
Ä

£
min	0Ä =

3.33 × 100°¨n	since the unit time interval is 5 min. The frequency range spanned several 

orders of magnitude. Thus, we applied the logarithm (with base 10) to define peak 

frequency (PF). PF spanned values ranging from -5 to -1, and the corresponding values of 

these in ¨n spanned from 3.33 × 100≠¨n to 3.33 × 1001¨n using the general conversion 

formula; 10ÆØ × 3.33 × 100°¨n. Intuitively, for example, if a periodic event occurs once 

every hour, the frequency is 
Ä

°∞±±
sec0Ä = 2.78 × 1001¨n = 8.35 × 100x	´^kL, and after 

taking logarithm with base 10, PF =	−1.08. 

	

The density color scale in scatterplots  

The color scale (Figures 1F, 2A-C, 3B-C, S2D-E, S3A, S3C, S4A-D, S5B-C, S6A, and 

S6E-F) denotes the distribution density reflecting the relative abundance of data points. For 

each plot a 100 × 100 grid was constructed by partitioning the x and y ranges into 100 

equal-size bins. The density value for each rectangle was obtained using the kde2d function 

in the R package MASS with the option n=100. Then, each data point was assigned the 

density value (and shown using the corresponding color scale) of the bin within which the 

data point is located.  



Table S1. (Related to Figures 1, 3, and 4) Kinetic parameters with biologically plausible ranges 

from the literature. 

Parameter Description (unit) Range 

!"# The rate of switching of the promoter state from 
off- to on-state (event/hour) 

0.04-0.4 

!"$$ The rate of switching of the promoter state from 
on- to off-state (event/hour) 

0.01-0.5 

!% The maximum rate of mRNA production 
(events/hour) 

0.1-3500 
(0.1-1000)* 

&% The rate of mRNA degradation 
(events/molecule/hour) 

0.004-16 

!' The rate of protein production 
(events/molecule/hour) 

0.1-20000 
(0.1-1000)* 

&' The rate of protein degradation 
(events/molecule/hour) 

0.0005-6 

( 
Cooperativity for Hill functions of proteins 
(Hill coefficient) regulating the 
promoters/enhancers of downstream genes 

1 
1-5 
1, 5  

) 

The level (copy number or ratio to mean protein 
copy number) of the protein needed to achieve 
half maximum transcriptional rate for the 
downstream gene  

133.33 (copy number) for 
two-gene** 

30-3000 (copy number) for 
two-gene negative 

feedback*** 
0.2-5 for (ratio) for three-

gene feedforward 
	
Superscripts are used to denote the gene (for example, *+,,- ) and subscripts are used to denote 

parameters involved in the interaction between genes, for example, /-0 and 1-0 for interaction 

between protein X and the promoter/enhancer of gene Y).  

*For genes encoding transcription factors.   

**The value was fixed as our previous work (12). 

***In our analyses, these parameters were rescaled and expressed as a ratio to the estimated 

mean copy number of the protein. For further information including references, see STAR 

Methods. 

 


