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ABSTRACT 

Gene functional enrichment is a mainstay of genomics, but it relies on manually curated              

databases of gene functions that are incomplete and unaware of the biological context. Here we               

present an alternative machine learning approach, Deep Functional Synthesis (DeepSyn),          

which moves beyond gene function databases to dynamically infer the functions of a gene set               

from its associated network of literature and data, conditioned on the disease and drug context               

of the current experiment. Using a knowledge graph with ​3,048,803 associations between            

genes, diseases, drugs, and functions, DeepSyn obtained accurate performance (range 0.74           

AUC to 0.96 AUC) on a variety of biological applications including drug target identification,              

gene set functional enrichment, and disease gene prediction. 

 

Availability: ​The DeepSyn codebase is available on GitHub at         

http://github.com/wangshenguiuc/DeepSyn/​ under an open source distribution license. 

 

  

http://github.com/wangshenguiuc/DeepSyn/


 

MAIN TEXT 

A common outcome of genomic analysis is the discovery of gene sets underlying specific              

biological functions. For instance, gene expression analyses produce sets of genes that are             

differentially expressed across conditions, or that cluster by expression similarity. Proteomics           

experiments produce lists of proteins and, by implication, their encoding genes, and so on. In all                

of these cases, the basic hypothesis is that the identified genes work coherently towards the               

same biological processes or functions. To label these functions, one turns to functional             

enrichment analysis. Among the numerous approaches that have been developed ​(Rhee et al.,             

2008; Zhou et al., 2017)​, some of the more widely used ones are the hypergeometric statistic                

(Breitling et al., 2004; Huang et al., 2009; Pomaznoy et al., 2018; Zeeberg et al., 2003) and                 

gene set enrichment analysis (GSEA) ​(Al-Shahrour et al., 2007; Backes et al., 2007; Beissbarth              

and Speed, 2004; Subramanian et al., 2005)​, which seek to identify overlaps between the              

identified set of genes and those from a separate, pre-defined catalog of gene sets associated               

with known biological functions and pathways ​(Cerami et al., 2011; Fabregat et al., 2018;              

Kanehisa and Goto, 2000; Pico et al., 2008; Wang et al., 2018a)​.  

 

Paradoxically, a gene set for which there is a very strong functional enrichment may be of less                 

interest to researchers, since the set and its function have already been well characterized by               

previous studies. Of greater interest are gene sets that fail functional enrichment, or overlap              

known functions only marginally, because it is precisely from these ‘failures’ that new biological              

findings emerge. In these cases, an immediate next step is to explore the biological literature,               

as well as complementary data sets, to learn as much as possible about the genes in question.                 

The goal is to mine knowledge pertinent to each gene and then to use this knowledge to                 

synthesize mechanistic hypotheses for a function that might be held in common by all genes in                

https://paperpile.com/c/dSKbay/7a9v+yozq
https://paperpile.com/c/dSKbay/7a9v+yozq
https://paperpile.com/c/dSKbay/XviN+iS82+oMce+6fCQ
https://paperpile.com/c/dSKbay/pZTe+gZl8+A1WU+WGu8
https://paperpile.com/c/dSKbay/pZTe+gZl8+A1WU+WGu8
https://paperpile.com/c/dSKbay/mipJ+iiCI+Szka+gIcS+cCAi
https://paperpile.com/c/dSKbay/mipJ+iiCI+Szka+gIcS+cCAi


 

the set. As a result, new functional categories might be defined and added to existing collections                

of functions. This process of discerning relevant findings from data and literature, and reasoning              

on this information to synthesize functional hypotheses, has not been widely automated but is              

one of the central tasks performed by a genome scientist.  

 

When reasoning about gene functions, it is critical to include knowledge of the relevant              

experimental conditions and biological contexts under which the gene set has been identified.  

For instance, FoxA family transcription factors have been found to display different roles in a               

very strong tissue-specific manner. FoxA regulates glucagon expression in the pancreas,           

GLUT2 expression in the liver, and tyrosine hydroxylase expression in dopaminergic neurons            

(Fox et al., 2013)​. Such knowledge is strikingly absent from gene set functional enrichment              

tools, since their computational models and databases cannot easily encode the practically            

infinite space of biological conditions. 

 

Here, we sought to develop a new reasoning tool, Deep Functional Synthesis (DeepSyn), to              

learn the biological functions of a gene set from its totality of literature and data. Our goal was to                   

achieve two key advances over functional enrichment: the ability to synthesize new functional             

hypotheses rather than rely on the predefined functions of predefined gene sets, and the ability               

to guide these functional hypotheses by relevant biological conditions. 

 

Biomedical relation extraction (BRE) ​(Hristovski et al., 2003; Lever et al., 2019; Tsuruoka et al.,               

2011) can be viewed as a first attempt towards our goal. BRE is able to capture statistical                 

associations between entities referenced in literature, such as a gene name and a disease              

name that are co-mentioned in many abstracts. DeepSyn extends this concept by integrating             

https://paperpile.com/c/dSKbay/ya6o
https://paperpile.com/c/dSKbay/0Jw0+qCZE+WNWF
https://paperpile.com/c/dSKbay/0Jw0+qCZE+WNWF


 

associations from literature with those from primary data, and by moving beyond individual             

associations to build a global knowledge graph in which to trace highly relevant pathways of               

associations among genes, functions, diseases and/or drugs (e.g. linking disruption of a gene to              

changes in the activity of proteins, pathways, and incidence of disease in relevant experimental              

datasets).  

 

Defining and embedding​ ​biological functions in a global knowledge graph.  

The DeepSyn knowledge graph currently cap​tures 3,048,803 associations among ​85​,180          

biological entities including 27,175 genes, 26,365 diseases, ​4,125 ​drugs, ​and ​27,515 functions            

(​Figure 1A​, KEY RESOURCE TABLE​, STAR Methods​). Gene, disease, and drug identities are             

defined from public databases according to standard nomenclature (Genes: HNSC; Diseases:           

MeSH; Drugs: Chemical name). Functions, which have been less standardized, are defined by             

a combination of public databases (8,542 Gene Ontology term names) and entity recognition             

from biomedical abstracts using a deep neural network model (yielding another ​18,973 distinct             

biological functions​). Associations among these entities are mined from biomedical abstracts           

(e.g. probability of co-occurrence among genes and functions or pairs of functions), ontologies             

(e.g. associating drugs with targets, genes with diseases) or experimental databases (e.g.            

associating genes via protein-protein interactions or genes and diseases through genome-wide           

association studies).  

 

DeepSyn is queried with a set of genes, from which it returns the most relevant functions,                

diseases, and drugs extracted from the knowledge graph. The query is made context-specific by              

the addition of conditional constraints, which are also specified in the form of functions, diseases               



 

or drugs. Such conditions may even be specified without genes, in which case DeepSyn              

performs a reverse query to find the most relevant gene set (​Figure 1B​). 

 

Results are shown in the context of an “answer graph” which is extracted from the global                

knowledge graph. The answer graph contains direct links from specific to general entities. Each              

entity in the answer is associated with a ​P​-value of significance (the chance that entity would                

arise from random queries，​STAR Methods​), and each relationship between entities is linked            

to the supporting evidence in the biomedical literature or databases. For instance, a query with               

the disease “Inflammatory” produces an answer graph of 8 significantly associated functions            

and 15 genes (​Figure 1C​). In constructing the query, DeepSyn automatically adds any             

additional words and phrases that are frequent in the biomedical literature and contain the query               

or its conditional constraints. For example, the query “inflammatory” is expanded to add             

inflammatory myopathy, immune reconstitution inflammatory syndrome, and pelvic inflammatory         

disease (​Figure 1C​). Functions associated with more than one inflammatory diseases are in the              

answer graph, for example the top-ranked gene ​PTGS2 regulates the inflammatory response by             

generating prostaglandins ​(Hata and Breyer, 2004) and plays a key role in both the treatment of                

pelvic inflammatory disease ​(Dhasmana et al., 2014) and immune reconstitution inflammatory           

syndrome ​(Shankar et al., 2007)​.  

 

Functional synthesis can address multiple types of biological questions.  

We formulated a panel of gold standard queries to evaluate the accuracy of associating gene               

sets with functions, diseases, and drugs (​Figures 1A-D​). The average performance on all of              

these tasks was relatively high (range 0.74 to 0.96) and represented a substantial improvement              

in comparison to baseline approaches based on literature co-occurrence and mutual information            

https://paperpile.com/c/dSKbay/PWDd
https://paperpile.com/c/dSKbay/e3w9
https://paperpile.com/c/dSKbay/Xpo3


 

(​STAR Methods​). First, we examined the ability of DeepSyn to recover the catalog of function               

names assigned to human gene sets by the Gene Ontology (GO) (​Figure 2A​). DeepSyn was               

queried with the set of genes annotated to each GO Biological Process, Molecular Function, or               

Cellular Component term. For each gene and condition pair, we calculated an empirical ​P​-value              

for the corresponding knowledge graph to represent its significance compared to a random             

graph (​STAR Methods​). We then looked for terms among all candidate phrases ranked             

according to the ​P​-value to genes in the term. On all three Gene Ontology categories, DeepSyn                

outperformed both co-occurrence and mutual information-based baseline approaches by at          

least 18%. Second, we evaluated the reverse function query, in which DeepSyn was given a               

GO term (function) name and asked to predict the corresponding set of genes. In this case,                

DeepSyn achieved an average accuracy of 74%, 81% and 78% for BP, CC and MF branches,                

again significantly outperforming baseline approaches (​Figure 2B​).  

 

Next, we considered queries related to diseases, i.e. what disease was associated with             

alterations in a particular set of genes or, alternatively, what genes were associated with a               

particular disease. Compared to co-occurrence-based methods in the literature, we found that            

DeepSyn was able to outperform this baseline for at least 21% of the benchmark datasets for                

these two tasks (​Figure 2C​). For instance, for the disease query Fanconi Anemia (FA), 11 of the                 

top 20 genes returned in the answer graph had been identified as FA disease genes by                

previous studies collected by the Monarch database ​(Köhler et al., 2019) (​Figure 2C​). The gene               

RECQL5 was the top result, which was not documented in Monarch but was found to perform                

multiple functions in cells defective for the Fanconi anemia pathway ​(Kim et al., 2015)​. Further               

examining the answer graph, we found that ​RECQL5 was connected to FA through the function               

of chromosome segregation (​Figure 2D​) which is well known to play a role in FA pathogenesis                

https://paperpile.com/c/dSKbay/TJdl
https://paperpile.com/c/dSKbay/0Ly1


 

(Cerabona et al., 2014)​. This link was present in the knowledge graph due to ​RECQL5               

knockdown experiments, which have shown that ​RECQL5 is required for chromosome           

segregation through interactions with Topoisomerase II during mid-late S-phase     α     

(Ramamoorthy et al., 2012)​. Thus, DeepSyn was able to identify disease genes not covered by               

existing biological databases ​(Haendel et al., 2018)​. We also evaluated the reverse task, in              

which DeepSyn was given a set of disease genes and asked to predict the corresponding               

disease. On a collection of diseases in Monarch, DeepSyn achieved an average accuracy of              

0.83 which also showed significant improvement compared to baseline approaches (​Figure 2E​).            

Finally, we evaluated the ranking of target genes for a specified drug documented in the               

DrugBank database ​(Wishart et al., 2008)​. We found DeepSyn was able to achieve an accuracy               

of 96% compared to the baseline approach of 60% (​Figure 2F​).  

 

Providing context-specific answers to complex biological questions.  

As mentioned above, gene set queries can be augmented by the specification of functions,              

diseases, or drugs under which the gene set has been generated or is otherwise relevant               

(​Figure 3A​). Such “conditional” queries can be particularly useful in the functional annotation of              

gene sets arising from gene or protein expression studies. As a proof of concept, we performed                

an mRNA expression analysis of 286 glioblastoma tumor samples from The Cancer Genome             

Atlas ​(Cancer Genome Atlas Research Network, 2008)​. The 40 genes with largest variance in              

gene expression were organized into five clusters based on the cosine similarity (​Figure 3B​).              

Notably, none of these clusters (each corresponding to a gene list) was deemed to be               

significant using standard functional enrichment against the Gene Ontology (​Supplementary          

Table 1​). In contrast, DeepSyn was able to synthesize significant biological functions for all              

gene clusters (​Figure 3B​). For example, the genes ​INA, PAN-P2RY11, VSTM2A, ST8SIA3,            

https://paperpile.com/c/dSKbay/arjc
https://paperpile.com/c/dSKbay/FFqp
https://paperpile.com/c/dSKbay/UFKm
https://paperpile.com/c/dSKbay/r43Q
https://paperpile.com/c/dSKbay/Ttnx


 

PCSK2, ACTL6B and CDKN2A formed a coherent expression cluster across glioblastoma tumor            

samples. Querying DeepSyn with this gene set and the condition “glioblastoma” produced an             

answer graph implicating a hierarchy of specific-to-general functions including vessel maturation           

and autophagy (​Figure 3C​).  

 

Today, gene set enrichment remains the gold standard to measure the success of many              

biological discoveries in genomics. The main limitation of enrichment methods is that 1) genes              

perform different functions by interacting with distinct partners in different biological and clinical             

contexts and 2) they must rely on static manually curated gene functions. To address these               

limitations, here we have shown that it is possible to use machine learning algorithms to extract                

context-specific functional information and automatically construct accurate evaluating        

standards to measure the success rate of biological discoveries. This work enables a             

philosophical shift in functional analysis, from manual curation of literature to AI-based learning.  

  



 

STAR METHODS 

KEY RESOURCE TABLE 

REGENT or RESOURCE SOURCE IDENTIFIER 

Python package  
source code 

This paper https://github.com/wangshenguiuc/D
eepSyn 

Python package 
documentation 

This paper https://github.com/wangshenguiuc/D
eepSyn 

DrugBank Wishart et al., 2008 https://www.drugbank.ca/ 

STITCH Szklarczyk et al., 2016 http://stitch.embl.de/ 

Monarch Haendel et al., 2018 https://monarchinitiative.org/ 

Human Phenotype 
Ontology 

Schriml et al., 2019 https://hpo.jax.org/app/ 

MeSH Lipscomb et al., 2000 https://www.ncbi.nlm.nih.gov/mesh 

STRING Szklarczyk et al., 2019 https://string-db.org/ 

inBioMap Li et al., 2017 https://www.intomics.com/inbio/know
.html 

Literome Poon et al., 2014 https://literome.azurewebsites.net/ 

Gene Ontology Xiao et al., 2019 http://geneontology.org/ 

 

Collecting and processing biological databases and literature data 

The core of our method is to construct a heterogeneous knowledge graph integrating both              

literature data and multiple public biological databases. The knowledge graph considers four            

types of nodes including drug, gene/protein, disease, and biological function. We collected            

drug-target interactions, disease-disease associations, disease-gene associations,      

protein-protein interactions, function-gene annotations, and associations between functions. To         

construct these associations, we collected the following datasets: 1) drug-target interactions           

from DrugBank ​(Wishart et al., 2008) and STITCH ​(Szklarczyk et al., 2016)​, 2) disease-gene              

https://paperpile.com/c/dSKbay/r43Q
https://paperpile.com/c/dSKbay/wtEo


 

associations from Monarch ​(Haendel et al., 2018)​, 3) disease-disease associations from Human            

Phenotype Ontology ​(Schriml et al., 2019) and MeSH ​(Lipscomb, 2000)​, 4) protein-protein            

interactions from STRING ​(Szklarczyk et al., 2019)​, InBioMap ​(Li et al., 2017) and Literome              

(Poon et al., 2014)​, and 5) function-gene annotations and function-function associations from            

Gene Ontology ​(Xiao, 2019)​. Besides these public databases, associations between two           

biological entities could also come from PubMed by using text mining techniques. We collected              

16,731,155 scientific paper abstracts spanning a wide range of research areas. These abstracts             

were downloaded using NCBI public APIs (​https://www.ncbi.nlm.nih.gov/home/develop/api/​).       

The title of each scientific paper was appended to the corresponding abstract. The median size               

of each abstract was 200 words and 14 sentences. To mine this large text corpus, we first                 

constructed a vocabulary of high quality phrases (a sequence of one or more words) which was                

composed from two sources: 1) drug, disease, gene, and biological function names appeared in              

the database network; 2) phrases mined from PubMed free text by using an unsupervised              

phrase mining software AutoPhrase ​(Shang et al., 2018; Wang et al., 2018b)​. The weight              

between two phrase nodes was calculated by their mutual information based on their             

co-occurring probability in the literature. Mutual information is widely adopted in the BioNLP             

area to handle the frequency bias for calculating the co-occurring probability ​(Levy and             

Goldberg, 2014)​. In addition, we only considered two phrases that co-occurred in >10 articles as               

literature data was noisier compared to molecular data. The weights of these edges were all               

normalized to the range of 0 and 1. If there were multiple edges between the same pair of                  

nodes, the maximum value was selected as the final edge weight. 

  

Augmenting functional associations by using deep learning 

https://paperpile.com/c/dSKbay/UFKm
https://paperpile.com/c/dSKbay/DQf9
https://paperpile.com/c/dSKbay/Ke9c
https://paperpile.com/c/dSKbay/RqCm
https://paperpile.com/c/dSKbay/mD5k
https://paperpile.com/c/dSKbay/saEL
https://paperpile.com/c/dSKbay/aIRb
https://paperpile.com/c/dSKbay/9Zt4+I6V2
https://paperpile.com/c/dSKbay/VVXq
https://paperpile.com/c/dSKbay/VVXq


 

To quantify the relationship between two informative phrases, it is necessary to accurately             

identify whether a scientific paper is actually relevant to a particular function or not. To address                

this problem, we trained a neural network model based on the language corpus to explicitly               

predict whether a scientific paper was associated with a Gene Ontology term or not.  

 

Neural network architecture. In this work, we adopted a Convolution Neural Network (CNN) with              

one convolution layer on top of word embeddings GloVe obtained from an unsupervised neural              

language model ​(Pennington et al., 2014)​. Formally, let be the ​k​-dimensional (​k​=50)         xi ∈ Rk     

word vector corresponding to the ​i​-th word in the sentence. The filter output for the ​i​-th word             ci      

was defined as, 

                                                                                                     (1)elu ( Σ w x  )ci = R j=i
i+h−1

 
(1)

j + b(1)  

Here ​h was the filter window and was set to 5 in our implementation. was the weight matrix              w 
(1)      

of the linear transformation and was the bias vector. was the rectified linear activation     b(1)      eluR       

function which set values below 0 to 0 ​(Glorot et al., 2011)​. We used Eq (1) as a filter to scan                     

the sentence with length ​L and produced a feature map . A max-overtime          c , c , ... , c ]c = [ 1  2   L−h+1    

pooling operation then was applied over the feature map to select the maximum component              

as . The pooling result was then fed into a fully connected layercmax   rgmax{c , c , ... , c }a 1  2   L−h+1             

with a continuous of dropout layer and softmax layer as follows, 

                                                                            (2)of tmax ( Dropout( Σ w c  ) )o = S j=i
i+h−1

 
(2)

max + b(2)  

The prediction was associated with a mean-square error loss. and were linear  o         w 
(2)  b(2)    

weights and bias of this fully connected layer, respectively.  

 

https://paperpile.com/c/dSKbay/JT4N
https://paperpile.com/c/dSKbay/2avcF


 

Training algorithms and implementation details. Empirically we used the dropout rate of 0.5 and              

mini-batch size 500. We trained the weights of the neural network by using the gradient descent                

algorithm ADAM ​(Kingma and Ba, 2014)​. The learning rate of ADAM was set as 0.001. The                

whole computational framework was implemented using the PyTorch library         

(​https://pytorch.org/​). In total, we trained 8542 deep neural network models and got an average              

of AUC value 0.79 evaluated by using 5-fold cross-validation.  

 

Training data construction. We constructed a separate learning task for each Gene Ontology             

term. For each predicting task, we selected all PubMed articles with the term name explicitly               

showing in abstracts and used these articles as positive training samples. We also selected              

abstracts that did not contain this term but contained sibling terms (same parent term) on the                

Gene Ontology as negative training samples. In this way, we encouraged neural network             

models to learn more discriminative representations of the language corpus by constructing a             

more challenging machine learning problem. For each term, we randomly select some negative             

samples to keep its number as ten times of the positive samples.  

 

Constructing a biological knowledge graph.  

This trained CNN classifier was then used to annotate the gene ontology term to each abstract.                

Such annotation significantly expands existing language models based on co-occurring          

probability. For instance, an article mentioned “genetic instability” in its abstract and our CNN              

model also predicted that the article was related to “DNA repair”. In this way, we counted                

‘genetic instability’ and ‘DNA repair’ co-occur once. There were two levels of co-occurrence             

probability: the sentence-level and the abstract-level. The sentence-level co-occurrence         

probability ​P​AB  ​between two phrases ​A​ and ​B​ was defined as, 

https://paperpile.com/c/dSKbay/KBAz
https://pytorch.org/


 

                                       ​(3)P AB
sentence = # of  sentences contain A and B

# of  sentences contain A      # of  sentences contain B*
 

Similarly, the article-level co-occurrence probability was defined as, 

                                      ​         (4)P AB
article = # of  articles contain A and B

# of  articles contain A      # of  articles contain B*
 

To construct the knowledge graph, we chose to use the article-level co-occurrence probability             

but we also compared the performance of using sentence-level co-occurrence probability in            

Figure 2​. 

 

Querying the biological knowledge graph.  

Currently, DeepSyn supported four types of user’s queries including drug, disease,           

gene/protein, and function. Each field could be a set of entities (e.g., a gene set) or empty. If                  

both nodes belong to the Gene Ontology or the Human Phenotype Ontology, we let the more                

general node point to the more specific node based on the definition of the Gene Ontology and                 

the Human Phenotype Ontology. If two nodes are both informative phrases mined from             

literature, we let the node with higher occurring frequency in the literature point to the lower                

frequency one. DeepSyn extracted a subnetwork from the entire knowledge graph with respect             

to the user’s query by adopting a Depth First Search (DFS) algorithm. The source nodes of the                 

DFS algorithm were the diseases or functions in the user’s query and the target nodes were                

genes in the user’s query. We also restricted the size of the resulted subnetwork by setting the                 

maximum layer of the network to be less than 5 and each node could be only connected to at                   

most 10 nodes in the network. To calculate the ​P​-value for each node in the returned                

subnetwork, we first summed up the weights of its edges in the subnetwork and then calculated                

an empirical ​P​-value by comparing this score to a background distribution. The background             

distribution was fit by sampling 10,000 random subnetworks. The ​P​-value of a subnetwork was              



 

thus defined as the most significant ​P​-value of all nodes in this subnetwork. If one of the fields is                   

missing, DeepSyn will automatically search for all the allowed entities in this field and return the                

union of all the subnetworks based on a ​P​-value threshold (=0.05). For instance, if the user only                 

searches a drug’s name ‘gefitinib’ but does not specify any gene names, DeepSyn will              

automatically generate many queries, such as <“gefitinib”, “​BRAC1​”>, <“gefitinib”, “​TP53​”>...,          

and union all the returned subnetworks with significant ​P​-values. 

 

Evaluating the performance of DeepSyn.  

To evaluate the performance of DeepSyn, we compared DeepSyn with both co-occurrence and             

mutual information-based baseline approaches. Both approaches were evaluated on sentence          

and article levels. The sentence-level and article-level mutual information between ​A and ​B             

were defined as,  

                             ​                                                                (5) MIAB
sentence = P AB

sentence

P PA
sentence

B
sentence  

                                                                                                          (6) MIAB
article = P AB

article

P PA
article

B
article  

Here and were defined by Eq. (3) and (4). and were the  P AB
sentence   P AB

article          P A
sentence    P B

article    

probabilities that phrase ​A showed in a sentence or an article, respectively. DeepSyn and all               

baseline approaches were given a biological query and conditions supported by our system.             

For example, the user’s query could be a drug name, and all approaches were required to find                 

associated genes. Each approach answered the query by finding the condition that had the              

highest co-occurrence with the query in the system. DeepSyn and all baseline approaches             

returned a ranking list of answers. AUROC was then used as the metric to evaluate this ranking                 

list. When our experiments were related to GO, we evaluated the performance on all three               



 

categories of GO: Molecular Function, Cellular Component, and Biological Process. We also            

validated the answer to these queries according to existing biological databases.  
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FIGURES 

 

Figure 1. Overview of DeepSyn. ​(A) The DeepSyn knowledge network integrates a wide range              

of biological databases and biomedical literature. Insets illustrate the direct network           

neighborhoods of the drug acid ceramidase. ​(B) Five types of prediction. ​(C) ​The answer graph               

returned for the query ‘Inflammatory’.  

 



 

 

Figure 2. Prediction performance of DeepSyn. ​(A) Accuracy of predicting functions (Gene            

Ontology terms) for a given gene set. Performance is measured by Area Under Receiver              

Operating Characteristic (AUROC) curve. ​(B) Accuracy of predicting a gene set for a queried              

biological function. ​(C) Accuracy of predicting disease genes for a queried disease name. ​(D)              



 

Answer graph and associated ​P​-value returned for the query ‘Fanconi Anemia’. ​(E) Accuracy of              

predicting a disease given a gene set. ​(F)​ Accuracy of predicting targets for a particular drug. 

 

 

 

Figure 3. Annotation of genes coordinately expressed in glioblastoma. ​(A) DeepSyn can            

be used to query a gene set in the context of a disease. ​(B) gene expression clusters identified                  

through analysis of gene expression profiles of glioblastoma tumors (The Cancer Genome Atlas             

Research Network 2008). Each of the gene clusters defines a gene set and is used to query                 

DeepSyn to identify common functions. The bar plot on the right indicates the ​P​-value of each                



 

function identified by DeepSyn in the log scale. ​(C) The answer graph returned for one of the                 

glioblastoma gene clusters consisting of seven genes (red clusters in panel ​(B)​), with circle size               

indicating the ​P​-value of significance.  
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