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USMPep: Universal Sequence Models for Major
Histocompatibility Complex Binding Affinity

Prediction
Johanna Vielhaben, Markus Wenzel, Wojciech Samek, and Nils Strodthoff

Abstract—Background: Immunotherapy is a promising route
towards personalized cancer treatment. A key algorithmic chal-
lenge in this process is to decide if a given peptide (neoepitope)
binds with the major histocompatibility complex (MHC). This
is an active area of research and there are many MHC binding
prediction algorithms that can predict the MHC binding affinity
for a given peptide to a high degree of accuracy. However, most of
the state-of-the-art approaches make use of complicated training
and model selection procedures, are restricted to peptides of a
certain length and/or rely on heuristics.
Results: We put forward USMPep, a simple recurrent neural
network that reaches state-of-the-art approaches on MHC class I
binding prediction with a single, generic architecture and even a
single set of hyperparameters both on IEDB benchmark datasets
and on the very recent HPV dataset. Moreover, the algorithm
is competitive for a single model trained from scratch, while
ensembling multiple regressors and language model pretraining
can still slightly improve the performance. The direct application
of the approach to MHC class II binding prediction shows a solid
performance despite of limited training data.
Conclusions: We demonstrate that competitive performance in
MHC binding affinity prediction can be reached with a standard
architecture and training procedure without relying on any
heuristics.

Index Terms—major histocompatibility complex, binding affin-
ity prediction, peptide data, recurrent neural networks, language
modeling

I. BACKGROUND

Immunotherapy is a promising route towards personalized
cancer treatment with a variety of possible realization [see
1, for a recent review]. One path is the administration of
nanoparticle vaccines customized with neoantigens. The major
histocompatibility complex (MHC) plays a central role in this
process as it is supposed to bind to antigens (peptides) derived
from pathogens in order to display them on the surface of
the cell for recognition by T-cells. There are three classes of
MHC molecules, where MHC class I and II are most important
due to their involvement in the targeted immune response.
Due to the special nature of the MHC protein, it can bind to
peptides that are potentially structurally very different from
each each other. Therefore, the prediction if a certain peptide
binds is a very challenging task that is, however, a crucial sub
task for neoantigen identification for practical realizations of
personalized immunotherapy [1].

The MHC binding prediction is a well-established problem
in bioinformatics with a large number of existing algorithmic
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solutions. Although many of them show an excelllent perfor-
mance, the present algorithms typically rely on complicated
training procedures, such as pretraining on prediction tasks
for related alleles or training with artificial negative peptides
to achieve this performance. In addition, many of them use
complicated model selection procedures to select a small num-
ber of well-performing models from potentially hundreds of
trained models to eventually construct an ensemble classifier.
Most of the existing approaches are restricted to peptides of
fixed length, where shorter sequences are padded or longer
sequences are trimmed to an appropriate length by well-
motivated but still heuristic rules to identify so-called binding
regions. The most prominent MHC I prediction algorithms are
summarized in Tab. I. We refer to dedicated reviews for more
detailed comparisons [2; 3].

Finally, not all binding prediction tools are evaluated on
standard benchmark datasets, which reduces the comparability,
and, even where this is the case, it is often hard to disentangle
algorithmic advancements from improvements due to larger
amounts of training data. In addition, statements about the
generalization in the sense of the algorithm’s performance
when applied to unseen data are often difficult due to potential
overlaps between train and test sets, in particular as training
sets often remain undisclosed. This urges for the creation for
benchmark repositories, where the existing data are processed
in a standardized fashion and split into training, validation and
test sets.

In this manuscript, we argue that state-of-the-art perfor-
mance can be reached with an astonishingly simple procedure.
We use a single-layer recurrent neural network that is trained
end-to-end on a regression task without any task-specific prior
knowledge such as fixed embeddings in the form of amino
acid similarity matrices. By construction, this model is able
to incorporate input of variable length without the need for
heuristics, such as for the identification of binding regions. The
model is trained using standard training procedures without
any artificial data or pretraining on related classification tasks.
Even single models are is very competitive. Ensembling or
language model pretraining only slightly improve this perfor-
mance. We fix hyperparameters only once and use standard
benchmark datasets to assess the model performance. We
provide, amongst others, evaluation results on the recently
published HPV dataset [9], demonstrating an excellent per-
formance, which strongly suggests that the measured model
performance generalizes to unseen peptide data.

Recurrent architectures have already been used previously
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Table I: Comparison of MHC I prediction tools

Architecture

SMMPMBEC [4] One-hot encoding, linear model (scoring matrix)

consensus [5] Linear model (scoring matrix), median rank as prediction

NetMHC4 [6] Input: 9mer fixed length BLOSUM encoding plus additional features; multilayer perceptron with one
hidden layer

NetMHCpan4 [7] Input: 9mer fixed length BLOSUM encoding for peptide, pseudo-sequence for MHC molecule plus
additional features; multilayer perceptron with one hidden layer

MHCFlurry [8] Input: 15mer fixed length BLOSUM62 encoding, missing residues filled with wildcard AA; feedforward
NN with 0 to 2 locally connected and one fully connected hidden layer

USMPep (this work) Learned embedding layer; AWD LSTM with one hidden layer

Training Procedure

SMMPMBEC Ridge regression with modified regularization, PMBEC similarity matrix as Bayesian prior

consensus Four scoring matrices from existing algorithms

NetMHC4 Training on non 9mer peptides by insertion of wildcard AA or deletion at all possible positions; augmented
training set with natural peptides for each length assumed to be negative

NetMHCpan4 Same insertion/ deletion procedure as NetMHC4; augmented training set with random artificial negatives

MHCFlurry Pretraining on BLOSUM62 similar allele for alleles with little training data; augmented training set with
artificial negative peptides

USMPep Optional: language model pretraining on unlabeled sequences

Model Selection

SMMPMBEC Single model

consensus Single model

NetMHC4 Ensemble of 4 NNs

NetMHCpan4 Ensemble of 100 NNs

MHCFlurry Ensemble of 8-16 NNs selected from 320 models on a validation set

USMPep Optional: ensemble of 10 NNs with identical architectures and hyperparameters

for MHC binding prediction [10; 11] and we discuss in
more detail how USMPep stands out from these approaches.
MHCnuggets [10] is rather similar to the proposed approach
(apart from the use of fixed embeddings), but relies on a
complex transfer learning protocol to achieve its performance.
Only limited benchmarking results are available, which makes
it difficult to realistically assess its prediction performance.
The very recent MHCSeqNet [11] also uses a recurrent archi-
tecture, again with pretrained rather than learned embeddings,
incorporating both peptide and allele sequence to train a
single prediction model for all alleles. However, the paper
frames the prediction task as a classification task, which
makes it difficult to align the results with the large number of
existing benchmark datasets that are predominantly targeted
at regression tasks. Nevertheless, the inclusion of the allele
sequence represents an exciting opportunity for MHC binding
affinity predicion in particular in the light of recent advances
in natural language processing on tasks involving two input
sequences such as question answering tasks.

II. METHODS

A. USMPep: Universal Sequence Models for Peptide Binding
Prediction

The approach builds on the UDSMProt-framework [12]
and related work in natural language processing [13]. We
distinguish two variants of our approach, either train the
regression from scratch or employ language model pretraining.
A language model tries to predict the next token given the
sequence up to this token, on unlabeled sequence data, here:
of simulated proteasome-cleaved peptides. The architecture
of the language model is at its core a recurrent neural
network (LSTM) regularized by different kinds of dropout,
and more specifically an AWD-LSTM model [14]. After the
language model pretraining step, the model is finetuned on
the regression task of MHC binding prediction by replacing
the output layer with a concat pooling layer and two fully
connected layers. The setup closely follows that used in [12],
where protein properties were predicted. The smaller dataset
sizes and shorter sequence lengths in the peptide setting (in
comparison to protein classification) do not allow for building
up large contexts and were accounted for by the reduction of
the number of layers from 3 to 1, of the number of hidden
units from 1150 to 64 and of the embedding size from 400 to
50.
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Table II: Details of training and test datasets. The threshold for MHC class I binders is < 500 nM, except for the HPV dataset,
where the threshold is < 100 000 nM. For MHC class II binders, the threshold is < 1000 nM.

Dataset usage total size share of
binders

# alleles median
size

share of quant.
measurements

sequence
length

MHC class I

BD2009 train 117 326 0.25 53 1971 0.58 8–11

Blind test 27 680 0.33 53 470 0.58 8–11

MHCFlurry18 train 120 720 0.25 32 3659 0.68 8–15

IEDB16 I test 2827 0.54 32 73 1.0 9

MHCFlurry18 train 68 117 0.26 7 6884 0.64 8–15

HPV test 743 0.34 7 125 0.37 8–11

MHC class II

Wang10 train 23 203 0.37 24 999 1.0 15–37

IEDB16 II test 15 691 0.33 24 641 1.0 15

Similar to [12], the training procedure included 1-cycle
learning rate scheduling [15] and discriminative learning rates
[13] during finetuning. Target variables for the regression
model were log-transformed half-maximal inhibitory concen-
tration (IC50)-values and a modified MSE loss function [8]
that allows to incorporate qualitative data.

Dropout rate, the number of training epochs, hidden layers,
hidden units and embedding dimensions, were set based on
selected alleles of a particular MHC class I dataset (Kim14
[16], see the detailed description below) by using the score
on one of the provided cross-validation folds. The learning
rate was determined based on range tests [15]. After this
step, the aforementioned hyperparameters were kept fixed for
all datasets and alleles both for MHC class I and class II
prediction. In particular, neither hyperparameters nor models
were selected based on test set scores.

For later convenience, the following acronyms refer to the
prediction tools introduced in this work:

• USMPep FS sng single prediction model trained from
scratch

• USMPep FS ens ensemble of ten prediction models
trained from scratch

• USMPep LM sng single prediction model with lan-
guage model pretraining

• USMPep LM ens ensemble of ten prediction models
with language model pretraining

For simplicity, we consider ensembles of models with iden-
tical architectures and hyperparameters and average the final
individual predictions.

B. MHC Binding Prediction Datasets

For the downstream task of peptide MHC binding predic-
tion, we benchmarked our model on three MHC class I and
one MHC class II binding affinity datasets (details listed in
Tab. II). These datasets comprise peptide sequences and the
corresponding binding affinities to specific MHC alleles.

a) Kim14: is a commonly used binding affinity dataset
compiled by [16], available on the Immune Epitope Database
(IEDB)1 [17], and is split into a non-overlapping training
(BD2009) and test set (Blind). Similar peptides (of same length
with at least 80% sequence identity) shared by training and
test set were removed from Blind. For BD2009, we selected
the provided cross-validation split without similar peptides
between the subsamples (”cv gs”). There are 53 class I alleles
(human and mouse/ macaque alleles) with respectively 117 326
and 27 680 affinity measurements in BD2009 and Blind.

For comparability with recently developed systematical
benchmarks [2; 9] we tested USMPep on two further MHC I
datasets, which we refer to as HPV and IEDB 16. The training
data of the tools reported in the literature vary in size and
compilation. We trained our models on data provided by [8]
and refer to this dataset as MHCFlurry18. It is assembled from
an IEDB snapshot of December 2017 and the Kim14 dataset.

b) HPV: is a recently published dataset and consists
of 743 affinity measurements of peptides derived from two
human paillomavirus 16 (HPV16) proteins binding to seven
HLA class I alleles [9]. Peptides were considered as binders
if they had IC50-values below 100 000 nM. For peptides
classified as non-binders, quantitative measurements are not
available.

c) IEDB16 I: is made up of an IEDB snapshot of Octo-
ber 2016 [2]. It was filtered for quantitative measurements with
IC50 ≤ 50 000 nM and 9mer peptides. Training sequences of
other tools were removed from the dataset. It consists of 2827
affinity measurements across 32 class I alleles. We removed
any sequences occurring in the test dataset from our training
data MHCFlurry18.

In addition, we trained and tested USMPep on MHC class
II binding data:

d) Wang10: is an experimental binding affinity dataset
from the IEDB site2 based on the dataset by [18]. We used it

1http://tools.iedb.org/main/datasets/
2http://tools.iedb.org/mhcii/download/

http://tools.iedb.org/main/datasets/
http://tools.iedb.org/mhcii/download/
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to train our prediction tools.
e) IEDB16 II: is a MHC II test dataset provided by

[2] from the same IEDB snapshot as the MHC I IEDB16 I
test set above, filtered for quantitative measurements with
IC50 ≤ 50 000 nM and 15mer peptides. After removing
sequences present in the training data, 15 034 affinity mea-
surements covering 24 alleles remained in the test dataset. We
benchmarked our models on this dataset.

C. Evaluation Metrics

For performance evaluation, we consider two evaluation
metrics that are most frequently considered in the literature
[2; 8]: The area under curve of the receiver operating statistics
(AUC ROC) measures the performance of binary classifying
binders and non-binders. While AUC ROC is straightforward
to evaluate, it comes with the disadvantage of having to specify
a threshold to turn the targets into binary labels, which discards
valuable label information during the evaluation procedure.
As discussed in the previous section, there exist commonly
applied threshold values for the datasets under consideration
but the simplicity of this procedure neglects a possible allele
dependence of these threshold values [19]. This issue is cir-
cumvented by the use of ranking metrics such as Spearman r
that evaluate the correlation between the rankings of measured
and predicted affinities. Spearman r can only be evaluated
for quantitative measurements, which discards information
when evaluating on test sets containing also qualitative mea-
surements. For both metrics, we calculated error bars based
on 95% empirical bootstrap confidence intervals. For single
models, we report the mean performance across 10 runs and
the maximal deviation of the point estimate compared to the
lower and upper bounds provided by the respective confidence
intervals as a convervative error estimate.

The prediction performance across different alleles that
make up a single MHC benchmark dataset can be quanti-
fied in different ways. Overall performance measures can be
calculated across multiple alleles by concatenating all target
and prediction results and evaluating the respective metrics
on this set. This predominantly used but rarely discussed
method has to be contrasted with reporting the mean or
the median of the respective performance measures across
all alleles, which is the default evaluation metric for related
tasks such as remote homology detection [20] or transcription
factor binding site prediction [21]. The difference between
both evaluation approaches is related to the discussion about
micro vs. macro averages for the evaluation of multi-class
classification problems [22]. In particular, there are two funda-
mental differences between both evaluation approaches: First,
the datasets enter the overall score with different weights
determined by the size of the respective test sets, which is
a weighting based on the experimental availability of binding
affinities whereas the mean score assigns equal weight to all
test sets. Second, the overall performance measure implicitly
assumes that prediction scores are directly comparable across
different alleles, which seems slightly questionable in the
light of the discussion of allele-dependent binding thresholds
[19]. To give the reader a complete picture of the prediction

performance, we will report overall as well as mean scores.
In any case, we advocate to provide individual prediction for
all peptides, which allows to possibly redo the analysis using
a difference performance metric at a later point in time. To
this end, the peptide-wise binding affinity predictions for our
tools are provided in the accompanying code repository.

III. RESULTS

The results section is organized as follows: In Sec. III-A we
present a detailed evaluation of the performance of USMPep
for MHC class I binding affinity prediction. This is done based
on three different benchmark datasets that highlight different
performance characteristics. In Sec. III-B we investigate the
applicability of our methods for MHC class II binding affinity
prediction. Finally, we discuss language modeling on peptide
data and its impact on downstream performance in Sec. III-C.

A. MHC Class I Binding Prediction

1) IEDB16 Dataset: We open the assessment of MHC class
I binding prediction with results on the IEDB16 dataset that
showcases the excellent predictive performance of USMPep.
We compare to literature results that were evaluated in a recent
comprehensive benchmark [2] on this dataset. This benchmark
includes evaluation metrics testing not only accuracy of binder
classification, but also accuracy of binding affinity ranking and
direct binding affinity prediction accuracy. Covering 32 HLA
alleles, the IEDB16 dataset reflects a broad spectrum of MHC
molecules.
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Figure 1: Comparison of MHC class I predictors. AUC ROC
and Spearman r are evaluated on predictions for the IEDB16 I
test set. AUC ROC could not be evaluated for alleles HLA-
B-2704, HLA-B-1503 and HLA-B-1501, whereas Spearman r
could not be computed for alleles HLA-B-1503 and HLA-B-
1501. These alleles are therefore not included in the scores.

In Fig. 1, we show overall AUC ROC and overall Spear-
man r as reported by [2] for the latest versions of the
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Table III: Benchmarking MHC class I predictors on recently published binding affinity data (HPV16). Predictive performance
is evaluated by AUC ROC (threshold for binders < 100 000 nM) on single alleles and across all alleles (mean and overall).
The scores for literature approaches were calculated based on peptide-wise predictions provided in [9].

allele HLAA1 HLAA11 HLAA2 HLAA24 HLAA3 HLAB15 HLAB7 mean AUC ROC overall AUC ROC

USMPep FS ens 0.793 0.885 0.830 0.807 0.768 0.803 0.884 0.824(3) 0.814(3)

USMPep FS sng 0.785 0.883 0.822 0.798 0.764 0.799 0.883 0.818(4) 0.808(4)

USMPep LM ens 0.848 0.880 0.809 0.821 0.766 0.824 0.871 0.831(4) 0.815(3)
USMPep LM sng 0.813 0.869 0.805 0.802 0.755 0.805 0.854 0.813(5) 0.802(4)

MHCFlurry 0.816 0.850 0.833 0.755 0.793 0.797 0.867 0.817(4) 0.809(4)

NetMHC 3.4 0.841 0.867 0.793 0.765 0.840 0.825 0.884 0.831(3) 0.794(3)

NetMHC 4.0 0.823 0.855 0.792 0.730 0.779 0.825 0.801 0.803(4) 0.780(3)

NetMHCpan 2.8 0.756 0.863 0.787 0.778 0.794 0.857 0.880 0.818(4) 0.792(3)

NetMHCpan 3.0 0.841 0.848 0.781 0.739 0.778 0.876 0.825 0.815(4) 0.787(3)

NetMHCpan 4.0 0.839 0.854 0.805 0.742 0.784 0.891 0.836 0.820(3) 0.792(4)

SMM 0.476 0.828 0.730 0.643 0.788 0.704 0.646 0.684(5) 0.695(4)

SMMPMBEC 0.593 0.846 0.777 0.639 0.799 0.716 0.670 0.722(6) 0.723(4)

Pickpocket 1.1 0.744 0.773 0.757 0.709 0.731 0.808 0.802 0.760(5) 0.708(4)

consensus 0.570 0.870 0.772 0.687 0.767 0.832 0.756 0.751(5) 0.766(4)

IEDB recommended 0.566 0.877 0.769 0.702 0.772 0.852 0.755 0.756(5) 0.772(4)

NetMHCcons 1.1 0.807 0.872 0.797 0.777 0.819 0.847 0.889 0.827(4) 0.799(3)

NetMHC tools, MHCFlurry, SMMPMBEC and consensus and
our scores for the different versions of USMPep. This is
supplemented by mean AUC ROC and mean Spearman r com-
pared to results provided in the data repository accompanying
[2]. For the latter error bars could not be calculated for the lit-
erature approaches due to the fact that only allele-wise scores
but no peptide-wise predictions were provided. In the light of
the issues discussed in Sec. II-C, we advocate the use of mean
scores rather than overall scores. For easy comparability, we
also provide overall scores as they are used predominantly in
the literature. It turns out that an ensemble of ten predictors
with language model pretraining (USMPep LM ens), reaches
the highest scores in both mean evaluation metrics. In this
respect the results of all four USMPep-variants are consistent
with each other and similar (within error bars) to the result
of MHCFlurry, the best-performing method in the benchmark
[2]. This result stresses the claims of excellent prediction
performance even for a single model trained from scratch.
Interestingly, the performance of all proposed prediction tools
is slightly worse when considering overall scores. In particular,
in terms of overall AUC ROC none of our predictors is
consistent with MHCFlurry within error bars. We further
investigated the origin of this performance deficiency and
found that it could be traced back to a single allele, HLA-
B-3801, which is peculiar in the sense that 172 of the 176
test set samples fall into a single Hobohl cluster [16] of
sequences with more than 80% sequence similarity, i.e. show a
particularly high sequence identity that is not seen in other test
datasets. These 172 samples constitute a sizable amount of the
overall 2827 test samples and strongly influence the predictive
performance when using overall performance metrics. With
this single exception in terms of overall ROC AUC, our
proposed methods are consistent with the best-performing
methods for all MHC I benchmark datasets both for overall

and mean performance metrics.
2) HPV Dataset: As the training data is not publicly

available for some MHC I prediction tools, a possible over-
lap between training and test datasets and correspondingly
an overestimation of the predictive performance cannot be
excluded. The same applies to the most common procedure of
reducing the overlap between training and test set by merely
removing sequences from the test set that are also contained
in the training set in identical form rather than using more
elaborate measures for sequence similarity. These issues can
be circumvented by a performance evaluation on a dataset of
different origin that has so far not been used to train MHC
prediction tools. This applies to the recently released HPV
binding affinity data [9]. However, in this benchmark, it is not
possible to disentangle superior prediction performance due
to larger amounts of training data from algorithmic advances
since size and compilation of the training set of the algorithms
vary.

As there are only quantitative measurements for the peptides
considered as binders, we chose to evaluate the predictive per-
formance only based on AUC ROC. We report the performance
of all models considered in [9] and our tools measured by
AUC ROC in Tab. III, where we used the predictions provided
by [9]. Our USMPep tools show an excellent prediction
performance. For three out of seven alleles an USMPep-model
even reaches the highest AUC ROC. All neural-network-based
predictors show a similar AUC ROC evaluated across all
measurements in the dataset, while the ensemble with language
model pretraining (USMPep LM ens) shows the highest mean
and overall scores among all prediction tools. As for the
IEDB16 dataset, even the single model USMPep-tools are very
competitive.

It is instructive to investigate the performance of the differ-
ent MHC prediction tools restricted to peptides of a certain
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Figure 2: Evaluating MHC class I predictors on recently
published binding affinity data (HPV16) grouped by peptide
length. Predictive performance is evaluated by mean AUC
ROC. For allele-wise and overall performance comparisons
see Tab. III

length, which is only possible for the HPV dataset, where
pepeptide-wise predictions for all literature approaches are
provided. The result of such an analysis is shown in Fig. 2.
Our tools outperform the other models on 11mer peptides. On
10mer peptides, our ensemble with language model pretraining
(USMPep LM ens) and NetMHC 3.3 show a higher AUC
ROC than the other tools. For 9mers our model is outper-
formed by most other tools and shows worse performance on
8mers. This performance gap can be explained by the fact that
the internal state of the recurrent neural network has to build
up over the sequence. The longer the peptide, the more context
is available, which is why USMPep generates more accurate
predictions for long sequences than for shorter ones.

3) Kim14 Dataset: As final benchmark dataset for MHC
class I prediction, we consider the Kim14 dataset that is
interesting for a number of reasons: In order to investigate
how the predictive power of our approach depends on the size
of the training data set, we trained and tested our model on
the Kim14 BD2009 and Blind data. The authors of [8] kindly
provided us with the Blind predictions of their tool trained on
BD2009, which allow for a direct comparison with a state-of-
the-art tool. Corresponding training routines are by now also
available in the code repository accompanying [8].

First, we compare the prediction success measured by AUC
ROC and Spearman r computed across all alleles (Fig. 3). No
MHCFlurry predictors exist for alleles HLA-B-2703, HLA-
B-0803 and HLA-B3801 with rank 45, 49 and 52 due to
insufficient training data. These alleles were therefore also
excluded for the scores of our tools. The predictors perform
very similarly with regard to all metrics. Our pretrained tool
USMPep LM ens performs only slightly better than USM-
Pep FS ens trained from scratch. This also holds for the
single model versions. Both USMPep ensemble predictors are
compatible with MHCFlurry.
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Figure 3: Performance of USMPep and MHCFlurry on MHC
class I binding prediction. Both models were trained on the
Kim14 BD2009 data. AUC ROC and Spearman r were evalu-
ated on the predictions for the Blind test set. AUC ROC could
not be evaluated for allele HLA-B-4601, whereas Spearman r
could not be computed for allele HLA-B-4601 and HLA-B-
2703. These alleles are therefore not included in the scores.

Second, to examine the impact of the training set size,
we report allele-wise Spearman r scores in Fig. 4 for our
predictors and MHCFlurry. The alleles are ranked by the
size of the corresponding training set. While 9528 training
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Figure 4: Performance of our MHC I prediction tools com-
pared to MHCFlurry on single alleles. Spearman r was calcu-
lated for predictions on the Kim14 Blind data for alleles with
more than 25 quantitative measurements. The predictors were
trained on Kim14 BD2009. The alleles are ranked by the size
of the corresponding training set (9528 peptides for rank 0 to
136 tpeptides with rank 52). No MHCFlurry predictors were
provided for alleles HLA-B-2703, HLA-B-0803 and HLA-B-
3801 with rank 45, 49 and 52.
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sequences exist for the rank 0 MHC molecule HLA-A-0201
there are only 136 training peptides for allele HLA-B-3801
with rank 52. Spearman r is only shown for alleles with
more than 25 quantitative measurements. The allelewise per-
formance gap between the tools becomes more pronounced
the less training data are available, yet none of the models
outperforms the others for the subset of alleles with less than
1000 training data points (rank 33 to 52). This is interesting
considering the fact that for alleles with fewer than 1000
training measurements, MHCFlurry was pretrained on an
augmented training set with measurements from BLOSUM
similar alleles, USMPep LM ens was pretrained on a large
corpus of unlabeled peptides and USMPep FS ens in contrast
only saw the training sequences corresponding to one MHC
molecule. These results stress that further efforts might be
required to truly leverage the potential of unlabeled peptide
data in order to observe similar improvements as seen for
proteins [12] in particular for small datasets.

B. MHC Class II Binding Prediction
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Figure 5: Comparison of MHC class II predictors. AUC
ROC and Spearman r were evaluated on predictions for the
IEDB16 II test set.

Turning to MHC Class II binding prediction, we aim
to demonstrate the universality of our approach beyond its
applicability to different MHC I alleles. Here, we stress again
that we use the same model architecture, the same pretrained
language model in case of pretraining, and even the same set of
hyperparameters for all MHC class I and class II alleles. The
main difference between and MHC class I and class II binding
prediction is the typically larger length of 15 amino acids
for MHC class II compared to at most 11 for MHC class I.
The analysis of the prediction performance in dependence of
the length of the peptide in the previous section suggests that
this setting is particularly suitable for the USMPep prediction
tools. Unfortunately, the reported literature results vary widely
concerning the selection of training data, which makes it

difficult to distinguish between algorithmic improvements and
improvements due to larger amounts of training data.

The USMPep prediction tools, and in particular the ensem-
ble variants, show a solid performance compared to literature
results, see Fig. 5. Whereas the USMPep-predictors always
provided the best-performing method for MHC class I predic-
tion, it is outperformed for MHC class II by NetMHCIIpan and
nn align. We deliberately decided to train on Wang10 instead
of a more recent IEDB snapshot to work on a well-defined
published dataset. However, this makes it hard to assess if
the performance differences between our results and the best-
performing methods can be attributed to the fact that the
USMPep-predictors were trained using IEDB data up to 2010
whereas in particular the best-performing tools were trained on
larger amounts and more recent data or if there a particular
intricacies inherent to the MHC class II prediction task.

C. Language Modeling on Peptide Data and its Impact on
Downstream Performance

As final analysis, we analyze language modeling on peptide
data and its impact on MHC binding affinity prediction as
downstream task. To this end, we constructed a dataset of
simulated proteasome-cleaved peptides to pretrain USMpep
on a large corpus of unlabeled sequences. We filtered the
SwissProt release 2018 10 for the human proteome and em-
ployed NetChop [23] to obtain proteasome cleavage sites for
these proteins. The stochastic process of protein slicing was
modeled by cutting with the cleavage probability provided by
NetChop. We discarded sequences of less than eight and more
than 20 amino acids length and obtained 6 547 641 peptides.
We compare the performance of a peptide language model to
that of a language model trained on human protein data using
prediction accuracy as metric.

Table IV: Language model and MHC class I binding affinity
prediction performance. Language model metrics perplexity
(perpl.) and accuracy (acc.) were in all cases evaluated on
peptide data. The downstream performance corresponds to an
ensemble of 10 predictors trained on the MHCFlurry18 and
evaluated on the IEDB16 I test set.

Model LM Downstream (mean)

perpl. acc. AUC ROC Spearman r

LM (protein) 39.3 0.083 0.90(2) 0.55(4)

LM (peptide) 13.4 0.206 0.89(2) 0.57(4)

From scratch – – 0.89(2) 0.55(3)

The results in terms of language model performance along
with the corresponding downstream performance (MHC) on
the regression task are compiled in Tab. IV and allow a number
of interesting observations: First, the language model perfor-
mance increases considerably when training on (proteasome-
cleaved) peptide data in accordance with expectations. It
is crucial to remark, that the language modeling task on
peptide data poses additional difficulties compared to language
modeling on protein data as the sequences are comparably
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short and the model thus cannot build up a lot of context.
Additionally, the model does not only have to learn the normal
language model task for protein data but implicitly has to
learn to stochastically predict cleavage sites. Second, even we
evaluated on protein data, the protein language model only
reaches an accuarcy of 0.137, which is is considerably lower
than the accuracy of 0.41 reported in the literature [12]. This
effect is a direct consequence of the considerably smaller
model size (1 instead of 3 layers; 64 instead of 1150 hidden
units; embedding size of 50 instead of 400).

The details of the language model pretraining directly
impact the downstream performance and show a consistent
trend across all experiments described above even though
the differences in downstream performance stay small and
mostly remain consistent within error bars. Consistent with the
general trend, the most downstream-task-adapted pretraining
on peptide data performs best, generally performing slightly
better than the corresponding model trained from scratch,
whereas pretraining on protein data in general even leads to a
loss in performance compared to training from scratch.

Table V: Performance summary: Rank of USMPep compared
to competitors across the different datasets. Scores marked
in bold face are best-performing or consistent with the best-
performing result within error bars.

Dataset mean overall

AUC ROC Spearman r AUC ROC Spearman r

MHC class I

IEDB16 I 1st 1st 3rd 2nd

HPV 1st – 1st –

Kim14 2nd 2nd 1st 2nd

MHC class II

IEDB16 II 4th 4th 3rd 4th

IV. CONCLUSIONS

In this work, we put forward USMPep, a recurrent neural
network that consistently shows excellent performance on
three popular MHC class I binding prediction datasets as well
as a solid performance on MHC class II binding prediction,
see Tab. V for an executive performance summary. Most
remarkably, this is achieved with a standard training procedure
without incorporating artificial negative peptides, complicated
transfer learning protocols or ensembling strategies and with-
out relying on heuristics.

A central issue that prevents a true comparability of algo-
rithmic approaches to the problem is the fact that the datasets
that were used to train the prediction models differ between
different literature approaches and are often not publicly avail-
able. This entangles the predictive power of a given algorithm
with the data it was trained on. This urges for the creation of
appropriate benchmarking repository along with standardized
evaluation procedures to allow for a structured benchmarking
of MHC binding prediction algorithms. As a first step, we

advocate to provide binding affinity predictions for all peptides
to allow fine-grained comparisons of the overall predictive
performance even at a later stage as opposed to reporting just a
single score summarizing the performance across all datasets.
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