
Mother machine image analysis with MM3

John T. Sauls † ∗ Jeremy W. Schroeder ‡ ∗ Steven D. Brown † Guillaume Le Treut †

Fangwei Si † Dongyang Li † Jue D. Wang ‡ Suckjoon Jun † §

The mother machine is a microfluidic device for high-throughput time-lapse imaging of microbes. Here,
we present MM3, a complete and modular image analysis pipeline. MM3 turns raw mother machine
images, both phase contrast and fluorescence, into a data structure containing cells with their measured
features. MM3 employs machine learning and non-learning algorithms, and is implemented in Python.
MM3 is easy to run as a command line tool with the occasional graphical user interface on a PC or Mac.
A typical mother machine experiment can be analyzed within one day. It has been extensively tested, is
well documented and publicly available via Github.

Introduction
Image analysis is a major bottleneck for live-cell, high-
throughput, time-lapse imaging. The mother machine is a
popular microfluidic platform for such imaging1. This brief
introduces an image analysis pipeline for mother machine
experiments named MM3. MM3 is implemented in Python
and can be accessed at https://github.com/junlabucsd/mm3
along with guides and a Docker container.

There are a number of mother machine-specific image
analysis packages available2–9 in addition to general cell im-
age analysis packages which may be adapted to a mother
machine workflow10–13. MM3 aims to be a complete and
flexible solution to this problem, taking raw micrographs
and producing readily graphable cell data. It includes sup-
port for phase contrast and fluorescence images, and has been
tested with different species (bacteria and yeast), mother ma-
chine designs, and optical configurations. We refer potential
users to our recent publications for examples of the use of
MM314,15.

The pipeline architecture is modular, which allows flexible
use of mid-stream outputs and straightforward troubleshoot-
ing. Time-lapse image analysis of this nature is normally
split into two tasks: segmentation and tracking of cells12.
MM3 provides standard and supervised machine learning
options for both. Graphical User Interfaces (GUIs) are in-
cluded for creating training data for machine learning meth-
ods. The methods and documentation herein describe the
pipeline generally. Users are encouraged to find the most
up-to-date documentation in the GitHub code repository.

How MM3 works
Image analysis via MM3 can be thought of in four discrete
modules Figure 1. Raw images are cropped and compiled
into stacks corresponding to individual growth channels.
Channel stacks are then presented to the user to be selected

∗ These authors contributed equally to this work.
† Department of Physics, University of California San Diego, La
Jolla, CA
§ Section of Molecular Biology, Division of Biology, University of
California San Diego, La Jolla, CA
‡ Department of Bacteriology, University of Wisconsin-Madison,
Madison, WI

for analysis or ignored. Cells are then segmented from each
other. Finally, segments are tracked through time to create
cell lineages. Individual cells in the lineages are represented
as objects which can be plotted directly or converted to an-
other data format.

Each module comprises multiple methods from which the
user may choose, usually one non-learning and one super-
vised learning. Generally speaking, the non-learning meth-
ods are faster but optimized for regular mother machine de-
signs and phase contrast imaging of bacteria. The supervised
learning methods can be applied to a wider range of experi-
mental set-ups and have low error rates, but require annotated
training data. A common strategy is to use the non-learning
methods to seed training data for the learning methods.

1 Channel compilation and designation

The first section of the MM3 pipeline consumes raw micro-
graphs and returns image stacks corresponding to one growth
channel through time ¶. Further pipeline operations are then
applied to these stacks.

A standard mother machine experiment consists of thou-
sands of images across multiple fields of view (FOVs) and
many time points. Images are first collated based on the
available metadata. MM3 expects TIFF files, and looks for
metadata in the TIFF header and from the file name.

All images from a particular FOV are analyzed for the
location of channels using the phase contrast plane. Channel
detection may be performed by using either a wavelet trans-
form or a convolution neural network. In the former method
of channel detection, a mask is made which is applied across
all time points. In the latter channel detection method, a
separate mask is generated for each timepoint. This enables
accurate alignment of channels when large amounts of stage
drift is an issue. Channels are cropped through time using
the masks and saved as unique image stacks that include all
timepoints for a given channel and imaging plane. MM3
saves channel stacks in TIFF format.

MM3 attempts to compile all channels. However, not all
channels contain cells and some channels may have unde-
sirable artifacts from the device preparation. It is therefore
desirable to only process certain channels for analysis. MM3
implements several methods for the user to choose from to
identify which channels should be analyzed. In our expe-

¶We refer to growth channels as ‘channels,’ while additional
images at the same time point (i.e., an image channel) as ‘planes.’

1

https://github.com/junlabucsd/mm3


mother 
machine 
images

cropped 
channel 
stacks

segmented 
channel 
stacks

images

compile

channel 
designation

segment

track
lineages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

cr
op

 g
ro

w
th

 c
ha

nn
el

co
m

pi
le

 c
ha

nn
el

 s
ta

ck
se

gm
en

t
tr

ac
k 

lin
ea

ge
s

time

dataprocess

inlet outlet

media �ow

growth channels

FOV

Mother machine schematic

Example images

B

C

MM3 work�owA

cell objects

image
metadata

designations

Figure 1: MM3 workflow and example images. (A) The MM3 image analysis pipeline takes raw mother machine images and
produces cell objects. Processes (rounded rectangles) are modular; multiple methods are provided for each. (B) Mother machine device
schematic. Growth channels flank a central flow cell which supplies fresh media and whisks away daughter cells. In a typical experiment
numerous fields of view (FOV) are imaged for several hours. (C) Example images from the processing of one growth channel in a single
FOV. The growth channel is first identified, cropped, and compiled in time. All cells are segmented (colored regions). Lineages are
tracked by linking segments in time to determine growth and division (solid and dashed lines, respectively), creating cell objects.

rience it is prudent to use the included GUI to manually
designate channels to retain for data analysis.

2 Cell segmentation
Cell segmentation is the first of the twomajor tasks in the im-
age analysis pipeline. Segmentation receives channel stacks

and produces 8-bit segmented image stacks. Typically, seg-
mentation is done using the phase contrast time-collated
stack.

MM3 has two methods for segmentation: a “standard”
method and a supervised learning method. The standard
method uses traditional image analysis techniques, specif-

2



ically background subtraction, Otsu thresholding, morpho-
logical operations, and watershedding/diffusion. The su-
pervised learning method uses a convolution net implement
using the U-net architecture16. A GUI and Jupyter note-
book is provided to both annotate training data and create the
convolution net model.

Illumination conditions can vary across laboratories, mi-
crobial species, and with device design. To improve perfor-
mance of the U-net on specific conditions, we recommend
a strategy which uses standard morphological techniques to
generate segmentation data for training. A subset of this
segmentation data is subsequently manually curated using
the provided GUI tool for use as U-net training data. U-net
training refinement on these datasets can be done relatively
fast, so subsets of training data can quickly be tested for
performance.

3 Cell tracking
Tracking segmented cells is the second major task in the
pipeline. Tracking involves linking cell segments in time in
order to define a lineage of cell objects. Two methods are
provided for tracking. One is a simple decision tree based on
a priori knowledge of binary fission and the mother machine.
For example, cells normally grow by a small amount between
time intervals, divide into two similarly sized daughter cells,
and cannot pass each other in the channel.

The second tracking algorithm applies several learned
classifiers to cell segmentation data to assign the probability
that each cell, at a given time point i, appeared in i, was
born in i, disappeared after i, dies after i, is the parent of
each cell in i+1, and is the same cell as each cell in i+1.
The results of running these models on windows of time in
the segmented image stacks are used to determine the most
likely track paths through a graph in which cells are nodes
and probabilities of each event described above are edges. A
GUI is provided to create annotated track data for training.
As with segmentation, the non-learning method can be used
as a foundation for creating high-quality training data for the
learning method.

4 Data output and analysis
Tracking produces a dictionary of cell objects which contains
relevant information derived from the cell segments. This
includes, but is not limited to, birth and division size, growth
rate, and generation time. Each object is identified by a key
which represents the FOV and channel of the cell, the time
point of its birth, and its position in the channel.

Since each cell object has the requisite information to find
its corresponding position in the channel stacks, the objects
can be appended via additional analysis. For example, the
corresponding location of a cell in a fluorescent image stack
can be retrieved, focus detection performed, and that infor-
mation can be added to the cell object. This minimizes the
burden of rerunning previous sections of the pipeline for new
sub-analyses.

MM3 indeed includes methods for fluorescence analysis,
from simple quantification of the fluorescence signal to foci
tracking14.

Plotting can be done from this cell object dictionary
directly, or it can first be converted to a .csv, a pandas
DataFrame, or a Matlab structure.

Availability, implementation, perfor-
mance, and guides
MM3 is primarily run as a command line tool, and com-
prises several scripts. GUIs are provided for curating cell
segmentation training data and cell tracking training data, in
addition to curating which channels to include in final anal-
yses. Parameters are passed to the individual scripts via a
text file in YAML format and as command line options. It
is readily forked or downloaded from the GitHub repository
(https://github.com/junlabucsd/mm3).

MM3 uses scikit-image17 for image analysis methods,
TensorFlow18 for learning methods including U-net seg-
mentation, and NetworkX19 for tracking graphs. MM3
is indebted to the “SciPy ecosystem” (SciPy, NumPy,
Jupyter/IPython, Matplotlib, and pandas20–24).

MM3 will run or a standard PC, Mac, or Linux machine,
and a Docker container is provided to ameliorate installa-
tion headaches. A mother machine experiment consisting
of 30Gb of raw image data (18 hours, 2 imaging planes, 50
FOVs, 25 growth channels per FOV) can be analyzed in less
than one day in a Docker container using 24Gb of RAMwith
a 3.5 GHz Intel Core i7 and no GPU.

Significant documentation exists on the MM3 repository,
covering both installation and usage. MM3 is intended to
be accessible for those with minor programming experience,
such as an undergraduate physics or engineering student. For
more advanced users, the modular framework is well-suited
to develop alternative approaches for certain tasks.

Download MM3: https://github.com/junlabucsd/mm3

User Forum: https://piazza.com/ucsd/fall2019/mm3

References

[1] “Robust growth of Escherichia coli.,” Current biology, 20, 1099–
103, 2010.

[2] M. Arnoldini, I. A. Vizcarra, R. Peña-Miller, N. Stocker, M. Di-
ard, V. Vogel, R. E. Beardmore, W.-D. Hardt, & M. Acker-
mann, “Bistable Expression of Virulence Genes in Salmonella
Leads to the Formation of an Antibiotic-Tolerant Subpopula-
tion.,” PLoS Biology, 12, p. e1001928, 2014.

[3] F. Jug, T. Pietzsch, D. Kainm, J. Funke, M. Kaiser, E. V. Nimwe-
gen, C. Rother, & G. Myers, “Optimal Joint Segmentation and
Tracking of Escherichia Coli in the Mother Machine,” 25–36,
2014.

[4] Time-lapse microscopy and image analysis of Escherichia coli
cells in mother machines, vol. 43. Elsevier Ltd., 1 ed., 2016.

[5] C. C. Sachs, A. Grunberger, S. Helfrich, C. Probst, W. Wiechert,
D. Kohlheyer, & K. Nöh, “Image-based single cell profiling:
High-throughput processing of mother machine experiments,”
PLoS ONE, 11, 1–15, 2016.

[6] M. Kaiser, F. Jug, T. Julou, S. Deshpande, T. Pfohl, O. K. Silan-
der, G. Myers, & E. van Nimwegen, “Monitoring single-cell gene
regulation under dynamically controllable conditions with inte-
grated microfluidics and software,” Nature Communications, 9,
p. 212, 2018.

3

https://github.com/junlabucsd/mm3
https://github.com/junlabucsd/mm3
https://piazza.com/ucsd/fall2019/mm3


[7] J.-B. Lugagne, H. Lin, & M. J. Dunlop, “DeLTA: Automated cell
segmentation, tracking, and lineage reconstruction using deep
learning,” bioRxiv, 1–17, 2019.

[8] J. Ollion, M. Elez, & L. Robert, “High-throughput detection and
tracking of cells and intracellular spots in mother machine ex-
periments.,” Nature protocols, 2019.

[9] A. Smith, J. Metz, & S. Pagliara, “MMHelper: An automated
framework for the analysis of microscopy images acquired with
the mother machine,” Scientific Reports, 9, p. 10123, 2019.

[10] S. Stylianidou, C. Brennan, S. B. Nissen, N. J. Kuwada, & P. A.
Wiggins, “SuperSegger : robust image segmentation, analysis
and lineage tracking of bacterial cells,” Molecular Microbiology,
102, 690–700, 2016.

[11] S. K. Sadanandan, O. Baltekin, K. E. G. Magnusson,
A. Boucharin, P. Ranefall, J. Jalden, J. Elf, & C. Wahlby, “Seg-
mentation and Track-Analysis in Time-Lapse Imaging of Bacte-
ria,” IEEE Journal of Selected Topics in Signal Processing, 10,
174–184, 2016.

[12] V. Ulman, M. Maška, K. E. G. Magnusson, O. Ronneberger,
C. Haubold, N. Harder, P. Matula, P. Matula, D. Svoboda,
M. Radojevic, I. Smal, K. Rohr, J. Jaldén, H. M. Blau,
O. Dzyubachyk, B. Lelieveldt, P. Xiao, Y. Li, S. Y. Cho, A. C.
Dufour, J. C. Olivo-Marin, C. C. Reyes-Aldasoro, J. A. Solis-
Lemus, R. Bensch, T. Brox, J. Stegmaier, R. Mikut, S. Wolf,
F. A. Hamprecht, T. Esteves, P. Quelhas, Ö. Demirel, L. Malm-
ström, F. Jug, P. Tomancak, E. Meijering, A. Muñoz-Barrutia,
M. Kozubek, & C. Ortiz-De-Solorzano, “An objective compar-
ison of cell-tracking algorithms,” Nature Methods, 14, 1141–
1152, 2017.

[13] D. Bannon, E. Moen, E. Borba, A. Ho, I. Camplisson, B. Chang,
E. Osterman, W. Graf, & D. V. Valen, “DeepCell 2.0: Automated
cloud deployment of deep learning models for large-scale cel-
lular image analysis,” bioRxiv, p. 505032, 2018.

[14] F. Si, G. Le Treut, J. T. Sauls, S. Vadia, P. A. Levin, & S. Jun,
“Mechanistic Origin of Cell-Size Control and Homeostasis in
Bacteria,” Current Biology, 29, 1760–1770, 2019.

[15] J. T. Sauls, S. E. Cox, V. Castillo, Z. Ghulam-Jelani, & S. Jun,
“Gram-positive and Gram-negative Bacteria Share Common
Principles to Coordinate Growth and the Cell Cycle at the
Single-cell Level,” bioRxiv, 2019.

[16] O. Ronneberger, P. Fischer, & T. Brox, “U-Net: Convolutional
Networks for Biomedical Image Segmentation,” in Medical Im-
age Computing and Computer-Assisted Intervention–MICCAI
2015, vol. 9351, 234–241, 2015.

[17] S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias,
F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, T. Yu, & scikit-
image contributors, “scikit-image: image processing in python,”
PeerJ, 2, p. e453, 2014.

[18] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, & Others, “Ten-
sorflow: A system for large-scale machine learning,” in 12th
{USENIX} Symposium on Operating Systems Design and Im-
plementation ({OSDI} 16), 265–283, 2016.

[19] A. Hagberg, P. Swart, & D. S Chult, “Exploring network struc-
ture, dynamics, and function using NetworkX,” tech. rep., Los
Alamos National Lab.(LANL), Los Alamos, NM (United States),
2008.

[20] E. Jones, T. Oliphant, P. Peterson, & Others, “SciPy: Open
source scientific tools for python,” 2001.

[21] S. Van Der Walt, S. C. Colbert, & G. Varoquaux, “The NumPy
array: a structure for efficient numerical computation,” Comput.
Sci. Eng., 13, p. 22, 2011.

[22] F. Perez & B. E. Granger, “IPython: A system for interactive
scientific computing,” 2007.

[23] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Comput-
ing in Science & Engineering, 9, 90–95, 2007.

[24] W. McKinney & Others, “Data structures for statistical comput-
ing in python,” in Proceedings of the 9th Python in Science Con-
ference, vol. 445, 51–56, 2010.

Acknowledgements This work was supported by the Paul G. Allen
Family Foundation, Pew Charitable Trust, NSF CAREER grant
MCB-1253843, NIH grant R01 GM118565-01 (to S.J.), and NIH
grant T32GM8806 (to J.T.S).

Author Information The authors declare no competing financial in-
terests.

4


	Channel compilation and designation
	Cell segmentation
	Cell tracking
	Data output and analysis

