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Abstract 
Microscopy image analysis is a major bottleneck in quantification of single-cell microscopy data, 
typically requiring human supervision and curation, which limit both accuracy and throughput. 
To address this, we developed a deep learning-based image analysis pipeline that performs 
segmentation, tracking, and lineage reconstruction. Our analysis focuses on time-lapse movies of 
Escherichia coli cells trapped in a "mother machine" microfluidic device, a scalable platform for 
long-term single-cell analysis that is widely used in the field. While deep learning has been 
applied to cell segmentation problems before, our approach is fundamentally innovative in that it 
also uses machine learning to perform cell tracking and lineage reconstruction. With this 
framework we are able to get high fidelity results (1% error rate), without human supervision. 
Further, the algorithm is fast, with complete analysis of a typical frame containing ~150 cells 
taking <700msec. The framework is not constrained to a particular experimental set up and has 
the potential to generalize to time-lapse images of other organisms or different experimental 
configurations. These advances open the door to a myriad of applications including real-time 
tracking of gene expression and high throughput analysis of strain libraries at single-cell 
resolution. 
 
Author Summary 
Automated microscopy experiments can generate massive data sets, allowing for detailed 
analysis of cell physiology and properties such as gene expression. In particular, dynamic 
measurements of gene expression with time-lapse microscopy have proved invaluable for 
understanding how gene regulatory networks operate. However, image analysis remains a key 
bottleneck in the analysis pipeline, typically requiring human supervision and a posteriori 
processing. Recently, machine learning-based approaches have ushered in a new era of rapid, 
unsupervised image analysis. In this work, we use and repurpose the U-Net deep learning 
algorithm to develop an image processing pipeline that can not only accurately identify the 
location of cells in an image, but also track them over time as they grow and divide. As an 
application, we focus on multi-hour time-lapse movies of bacteria growing in a microfluidic 
device. Our algorithm is accurate and fast, with error rates near 1% and requiring less than a 
second to analyze a typical movie frame. This increase in speed and fidelity has the potential to 



open new experimental avenues, e.g. where images are analyzed on-the-fly so that experimental 
conditions can be updated in real time. 
 
 
Introduction 
Time-lapse microscopy is an essential technique for studying dynamic cellular processes. With 
automated microscope hardware and microfluidic devices it is possible to parallelize experiments 
to both increase data resolution and to test many different conditions in parallel. Technical 
improvements in hardware as well as open microscopy software initiatives [1,2] have also made 
time-lapse acquisitions both faster and more flexible. Researchers today can test up to hundreds 
[3] of conditions in a matter of hours and, after analysis, iteratively refine their hypotheses and 
design a new suite of experiments. As an initial test case, we focus our analysis on images from 
the so-called “mother machine” microfluidic device [4]. In this device thousands of single 
bacterial cells are trapped independently in one-ended growth chambers where they can be 
observed for extended periods of time, while their progeny is progressively flushed out of the 
field of view (Fig. 1A). This experimental set up has been widely adopted as a popular standard 
for long-term, single-cell time-lapse imaging of bacteria such as E. coli [5–8], Bacillus subtilis 
[6,9], and Corynebacterium glutamicum [10]. Unfortunately, analysis of raw single-cell 
microscopy images remains a major bottleneck despite major efforts in this area.  
 
While a plethora of software suites have been developed for single-cell segmentation and 
tracking [11–14], including code specific to analysis of mother machine data [10,15,16], the vast 
majority require manual inputs from the experimenter and are designed for a posteriori 
processing. The relatively recent breakthrough in biomedical image analysis brought by deep 
convolutional neural networks, and the U-Net [17] architecture in particular, has introduced an 
era of fast-paced developments in the field [18]. Deep learning-based image processing is fast, as 
it can be run on graphical processors. Further, it can adapt to new data after being trained, thus 
improving performance and robustness. In addition, as long as a reasonably large and accurate 
training set can be generated, the same code can be re-used without parameter or code tweaking 
for different experimental setups or even different organisms. 
 
But cell segmentation alone does not extract the rich dynamic information contained in single-
cell resolution time-lapse movies. A recent study demonstrated the possibility of using deep 
learning methods to track single, non-dividing cells over time after segmenting them [19]. 
However typical time-lapse movies tend to feature several division events per frame, and 
common object-tracking deep learning solutions cannot be used to reconstruct those lineages as 
they are not meant to identify divisions of the monitored objects. The possibility to robustly 
segment cells, track them, and reconstruct lineages on-the-fly would not only speed up analysis 
and make it possible to process large amounts of data, but also would enable the development of 



“smart” microscopy platforms that could automatically trigger actions such as microfluidic or 
optogenetic inputs based on cellular events like division or transcription bursts. 
 
As an example, a small number of recent studies have highlighted the potential of computer-
based feedback control of gene expression in single cells as a new experimental paradigm 
[8,20,21]. This approach automatically adjusts chemical or optogenetic inputs based on real-time 
quantification of gene expression levels in cells to precisely and dynamically perturb regulatory 
networks. These studies have garnered insights into the dynamics of cellular processes that 
would have been otherwise impossible to study by other means [22]. However, to be able to 
perform feedback control at the single-cell level, image analysis must be performed on-the-fly, 
without any human supervision. To circumvent this problem, researchers have exploited 
constrained experimental geometries to localize cells [8], developed customized interfaces with 
flow cytometry [23,24], or restricted studies to experimental durations that avoid too many cell 
division events or conditions where the cells escape from the field of view [20]. By providing 
rapid access to a suite of quantitative, dynamic measurements about single cells, unsupervised 
approaches to image processing offer the potential to expand the scope of experiments that can 
exploit dynamic, real-time cell tracking. 
 
Here we introduce DeLTA (Deep Learning for Time-lapse Analysis), an image processing tool 
that uses two U-Net deep learning models consecutively to first segment cells in microscopy 
images, and then to perform tracking and lineage reconstruction. After training, our pipeline can 
analyze new acquisitions in a completely unsupervised fashion, with error rates of 0.14% for 
segmentation and 1.06% for tracking and lineage reconstruction. Data analysis is fast, requiring 
between 300-800msec per frame on consumer-grade hardware, depending on the number of 
tracked cells (Table 1). In addition to the deep learning algorithm itself, we also introduce a suite 
of scripts and graphical user interfaces to interface our Python-based U-Net implementation with 
Matlab to create and curate training sets. The code is available on Gitlab to facilitate distribution 
and adaptation by other researchers (Methods). By capitalizing on recent advances in deep 
learning-based approaches to image processing, DeLTA offers the potential to dramatically 
improve image processing throughput and to unlock new unsupervised, real-time approaches to 
experimental design. 
 
Results 
We applied the code directly to the problem of segmenting E. coli cells trapped in mother 
machine microfluidic chambers [4]. In the device, cells are grown in chambers of ~1µm in width 
and height, and 25µm in length (Fig. S1). This configuration traps a so-called “mother” cell at 
the dead-end of the chamber, and as the cells grow and divide the daughters are pushed out of the 
other end of the chamber (Fig. 1A). Nutrients are introduced by flowing growth medium through 
the main channel, which also serves to flush out daughter cells. This device has become a 
popular way to study single-cell dynamics in bacteria, as it allows for the long-term observation 



of single mother cells, with typical experiment durations of 12 to 30 hours [5,6,8,25], and 
sometimes up to several days [9]. It is also possible to image progeny, allowing for comparison 
of daughters, granddaughters, and great granddaughters for multi-generation analysis. This latter 
source of data is less frequently exploited due to the challenges associated with accurate 
tracking, therefore analysis has traditionally focused on the mother cell. However, these data 
have great potential, as they can contain generational information for thousands of cells. The 
DeLTA algorithm we introduce here is centered around two U-Net models, which are trained on 
curated data and then can be used to quickly and robustly segment and then track cells in 
subsequent images.  
 
Segmentation  
The first U-Net model is dedicated to segmentation and is very similar to the original model [17]. 
To create training sets, we began by using the Ilastik software [13] to segment time-lapse movies 
of cells in the mother machine chips. Note that other training set generation pipelines can be 
used, for example with other mother machine data analysis software [10,15,16], or if 
experimenters have pre-existing segmented sets. While our segmentation results with Ilastik 
were already fairly accurate (~1% error rate), we found that even after carefully designing an 
initial training set, the results generalized poorly to new datasets and usually required training 
sets to be generated or updated a posteriori with each new experiment. Therefore, we used a 
combination of Ilastik and manual curation to produce segmentation outputs that then served as 
training sets for our code. We stress that this training set generation process does not need to be 
repeated after initial training.  
 
Our code uses data augmentation operations (Methods) to ensure robustness to experimental 
variation and differences in imaging conditions. For example, changes in nutrient concentration 
can produce cells of different size or aspect ratio, or subtle light condenser mis-alignments can 
introduce differences in illumination of the image. With simple image transformations or 
intensity histogram manipulations to approximate such changes, the model can be trained to 
generalize to new, different inputs.  
 
To generate the training set, the time-lapse movies were cropped into thousands of pairs of 
images and segmentation masks for each chamber within the mother machine at each time point 
(Methods). These potential training samples were then manually curated with a rudimentary 
graphical user interface in Matlab to ensure that the U-Net algorithm was only fed accurate 
training samples. Once we curated a sufficient training set (~3,000 samples), which typically 
takes half a day, we trained the Python-based U-Net model against the segmented binary masks 
(Fig. 1B).  
 
To train the network we implemented a pixel-wise weighted binary cross-entropy loss function 
as described in the original U-Net paper [17] to enforce border detection between cells. Prior to 



data augmentation and training, weight maps were generated to increase the cost of erroneously 
connecting two cells together. In addition to the original procedure to generate the weight maps 
described in the U-Net paper, we also introduced an extra step that sets the weight to zero around 
the 1-pixel contour of the cells (Fig. 1B). By doing so, we relax the constraint on learning of the 
exact contour as provided in the segmentation masks in the training set. This allows the network 
to not only converge faster when training, but is also more generalizable, as the algorithm does 
not have to exactly fit the output of the Ilastik segmentation.  
 
The network was trained on images from two different multi-position time-lapse movies, and 
evaluated on a third data set acquired weeks later. It performed extremely well when segmenting 
bacterial images, with only 9 errors out of 6,311 (0.14%) segmented cells in our evaluation set 
(Fig. S2). With our desktop computer, each frame in our evaluation movie was processed in 
212ms. The whole movie, which features 12 positions, each with 193 frames was processed in 
about 9 minutes. 
 
Tracking and lineage reconstruction 
The main innovation in our approach is to use a U-Net architecture not only to segment cells, but 
also to track them from one frame to the next and identify cell divisions. To our knowledge, this 
is the first time a deep learning model has been used to accomplish this second half of the time-
lapse movie analysis pipeline. Using an approach that mirrors the original U-Net architecture 
(Fig. 1C, Methods), we use multiple images as inputs and outputs. Namely, for every cell at 
every time-point, we use four images as inputs: the transmitted light images for the current frame 
and the previous frame, a binary mask delimiting one “seed” cell that we want to track from the 
previous frame, and the segmentation mask for the current frame. This second U-Net model is 
used downstream of the segmentation U-Net to complete our time-lapse analysis pipeline. As 
outputs for training, we provide two binary masks, the first one delimiting where the seed cell is 
in the new frame, and the second delimiting where the potential daughter cell is, in case a 
division has happened (Fig. 1C).  
 
We developed a simple graphical user interface in Matlab for creating training sets. Because 
manually creating a dataset for this tracking step is not as tedious as for segmentation, we did not 
incorporate third party software into our workflow. Instead, the user simply clicks on cells to 
identify them in the new frame. Using this method, we generated a sufficient dataset with ~4,000 
samples in about four hours. Other approaches could speed up this process, such as employing 
tools already available for automated tracking [12,13,15,26]. However, users must be particularly 
careful not to introduce erroneous training samples into their set. To this end we also provide a 
graphical user interface similar to the one for segmentation that can be used to curate training 
samples. Note that it can also be used to curate and re-purpose the prediction output of the 
tracking U-Net as a training set, allowing for an iterative approach to training set generation. 
Again, we found that training does not need to be repeated provided the general image analysis 



pipeline and cell morphology remain the same. Once the tracking U-Net has generated tracking 
predictions on new data, the binary mask outputs are compiled into a more user-friendly lineage 
tree data structure. We provide a simple Matlab script that loops through the tracking mask 
outputs of the deep learning pipeline to assemble this structure.  
 
Once trained, we applied our tracking pipeline to follow cells and identify cell divisions in 
evaluation time-lapse movies that it had never seen before (Fig. 1D). Tracking and lineage 
identification errors rates were low, with only 11 mistakes in an evaluation set of 1,040 samples 
(1.06%). The majority of those errors arose from non-trivial tracking problems where humans 
also had difficulties identifying cells from one frame to the next (Fig. S3). Processing times are 
fast, with each cell in the movie tracked in 3.6ms and the 262,634 cells identified at the 
segmentation step processed in about 13 minutes.  
 
Feature extraction 
In addition to the segmentation and tracking models, we also developed a Matlab script for 
extracting morphological features such as cell length, area, and fluorescence levels following 
segmentation, tracking, and lineage reconstruction. As an example, we show results from a 
single chamber within the mother machine where we track a mother cell and its progeny over the 
course of 16 hours (Fig. 2A). The E. coli in this movie contain a green fluorescent protein (GFP) 
reporter (Methods). We tracked mean GFP levels over time for the mother cell and were also 
able to record cell division events, allowing us to track daughters, granddaughters, and great 
granddaughters before they were flushed out of the chamber. For each cell, we obtain 
morphological data; the length of the mother cell over time shows characteristic growth and 
division patterns (Fig. 2B). These data can also be used to calculate growth rate (Fig. 2C) and the 
timing of cell division events (Fig. 2D).  
 
To demonstrate the wealth of information that can be extracted from time-lapse movies using our 
analysis pipeline, we compared the fluorescence levels between different generations. We 
compared the mean GFP of the mother in the time interval between the preceding cell division 
and the current cell division to the mean GFP of the daughter in the interval between the current 
division and the next division (Fig. 3A). As expected, there was a strong correlation between 
mother and daughter fluorescence levels. We extended this analysis to granddaughters or great 
granddaughters by comparing GFP levels before the n-1 or n-2 division event for the 
grandmother or great grandmother (i.e., the last period of time the two cells were the same cell) 
to GFP levels after the current (n) division. We observed a decrease in the correlation between 
fluorescence levels the further away cells were in generational time (Fig. 3B). Highlighting the 
potential for massive data collection, the analysis for this specific fluorescent reporter data 
includes 10,793 mother-daughter comparisons, 7,932 mother-granddaughter comparisons, and 
2,078 mother-great granddaughter comparisons from a movie that ran for 16 hours with 108 
different chambers. 



 
In addition, imaging many mother cells over long durations provides high quality temporal data. 
We illustrate this by calculating the autocorrelation of the GFP signal (Fig. 3C). The resulting 
data give a high-fidelity view into the correlation times associated with the reporter, 
underscoring the potential for highly accurate measurements of dynamic, single-cell properties. 
 
Discussion 
In this study, we present an image analysis pipeline centered around two deep-learning models 
based on the U-Net architecture to segment, track, and identify divisions of bacteria growing in a 
microfluidic device. The U-Net architecture has proven to be a breakthrough technology for cell 
segmentation and is emerging as a standard for this image analysis task. With our training set 
and implementation, the error rate for segmentation drops to an impressive 0.14%. In addition, 
our novel approach extends these ideas to apply the deep learning model to also track cells and 
identify division events. The 1.06% error rate on this task is excellent and a clear improvement 
over other software designed to segment and track bacteria in mother machine devices. For 
instance, the mother machine movie analysis software MoMa [15] reports tracking error rates of 
about 4%. Other proposed solutions do not explicitly report their accuracy and typically require 
some parameter tweaking to be adapted to new data, and often also require a posteriori 
supervision [5,9,10,16,25]. We note that, our algorithm for post-processing the tracking output of 
our deep learning pipeline is very simple, and more elegant algorithms like the ones proposed in 
those studies could be integrated with our approach to reduce the error rate even further. 
Additionally, we provide large training datasets that can be used by others to improve upon our 
work. The tedious construction of training and evaluation datasets is often a limiting step in the 
adoption of machine learning techniques. To this end we also provide simple scripts and 
graphical user interfaces for users to assemble their own training sets for their specific setup. 
 
Indeed, we anticipate that the deep learning workflow presented here can be applied to any other 
microscope and mother machine devices without any code or parameter modifications. Other 
researchers can generate their own training sets following the workflow described in Results and 
Methods. Beyond bacteria in mother machine-type devices, our approach can, in principle, be 
applied to a wide range of similar problems. We rapidly explored this possibility by applying our 
software to tracking of the yeast species Saccharomyces cerevisiae freely growing in two 
dimensions, with benchmarking data taken from an another study [27]. Although encouraging, 
the tracking error rate of our pipeline was in the 5-10% range for datasets it was not trained on  
(Fig. S4), and thus does not outcompete state-of-the-art software designed specifically for yeast 
data analysis [27,28]. However, the yeast datasets we used are much smaller than what we 
generated for training our network on the mother machine data, which likely limits the 
performance of our models. Better post-processing algorithms could also help reach the same 
accuracy we achieved with the mother machine experiments. The ability of the algorithm to 



segment and track cells with dramatically different morphology and experimental constraints 
from the mother machine data suggests excellent potential for generalization of the approach. 
 
In conclusion, the DeLTA algorithm presented here is fast and robust, and opens the door to real-
time analysis of single cell microscopy data. We anticipate that there are a number of avenues for 
improvement that could push the performance even further, improving accuracy and processing 
speed. For instance, a clear candidate would be to use the U-Net tracking outputs as probability 
inputs for linear programming algorithms to compile lineages [29], replacing the simplistic 
approach we use in post-processing. Another possible extension to the work would be to 
implement a single U-Net model that performs segmentation and tracking simultaneously. In 
principle, this could increase processing speed even further by streamlining segmentation and 
tracking, and improve accuracy as the segmentation step would also take into account 
information from previous frames. Although we have focused on E. coli bacteria in the mother 
machine here, preliminary tests suggest that this algorithm may be broadly applicable to a variety 
of single-cell time-lapse movie data. We expect this approach to be generally well-suited to high-
throughput, unsupervised data analysis. In addition, this algorithm can be incorporated in 
“smart” microscopy environments, which represent a promising emerging research field, as cells 
and computers are interfaced to probe complex cellular dynamics or to steer cellular processes. 
  
 

Methods 

Data acquisition and datasets 
The E. coli strains imaged in the mother machine are an E. coli BW25113 strain harboring a low-
copy plasmid where the native promoter for the rob gene drives expression of a gene for a green 
fluorescent protein (gfp). The reporter comes from Ref. [30]. Cells were grown in M9 minimum 
medium with 0.4g/L glucose, 0.4g/L casamino acids, and 50µg/mL kanamycin for plasmid 
maintenance. The growth medium was also supplemented with 2g/L F-127 Pluronic to prevent 
cell adhesion outside of the growth chambers. 
 
The mother machine microfluidic master mold was designed using standard photolithography 
techniques [31]. Polydimethylsiloxane (PDMS) was poured onto the wafer, cured overnight and 
plasma bonded to a glass slide to form the final microfluidic chip. The chip features 8 
independent main channels where media flows, and each channel features 3,000 chambers of 
25µm in length and 1.3 to 1.8µm in width (Fig. S1, and 
https://github.com/jblugagne/mother_machine for GDSII file and details). Three time-lapse 
movies, two for training and one for evaluation, were acquired with a 100X oil objective on a 
Nikon Ti-E microscope. The temperature of the microscope chamber was held at 37°C for the 
duration of the experiment. Images were taken every 5 minutes for 16 to 20 hours. An automated 
XY stage allowed us to acquire multiple positions on the chip for each experiment. The two 



training movies and the evaluation movie for mother machine data contain 18, 15, and 12 
positions, respectively, with each imaging position containing 18 chambers. For each position 
and timepoint, the images were acquired both in phase contrast and epifluorescence illumination 
with a GFP filter. 
 
All raw data and datasets are available online at: 
https://drive.google.com/drive/folders/1nTRVo0rPP9CR9F6WUunVXSXrLNMT_zCP 
 
Implementation and computer hardware 
We recommend using the Anaconda Python distribution as this greatly simplifies installation and 
increases portability. All the necessary libraries can be installed on Windows, Linux, or 
MacOSX with Anaconda in just a few command lines, detailed in the Gitlab repository: 
https://gitlab.com/dunloplab/delta. 
 
The U-Net implementation we use here is based on Tensorflow 2.0/Keras and is written in 
Python 3.6. The general architecture is the same as the one described in the original U-Net paper, 
with small variations in the tracking U-Net architecture to account for the different input/output 
dimensions and the different loss functions (Fig. S5). Our code can be run on a CPU or GPU, 
though GPU results will be faster. Pre-processing and post-processing scripts as well as training 
set curation scripts and GUIs were written for and executed on Matlab R2018b. All computations 
were performed on an HP Z-840 workstation with an NVidia Quadro P4000 graphics card. 
 
Movie pre-processing 
For each position in the mother machine movies, the field of view contained 18 chambers. To 
reformat the movies for subsequent analysis with our U-Net pipeline, the movies were first pre-
processed in Matlab. This analysis allowed us to crop the larger image into 18 small images that 
were individually analyzed. A model image of a single empty chamber was cross-correlated with 
the full-view frame to detect the position of the chambers in the first frame of each movie. After 
cross-correlation, 18 peaks in the cross-correlation product image were detected as the centers of 
each individual chamber and an image of each of them was cropped around this point and saved 
to disk. Afterwards, we applied a second cross-correlation operation to correct for small XY 
drifting errors between frames. The individual chambers were then cropped out of each frame 
and saved to disk for subsequent analysis. 
 
Training set generation 
The two multi-position time-lapse movies used for training were first analyzed with the Ilastik 
software [13]. Image pixels were categorized into three classes: Cell insides, cell contours, and 
background (anything that was not a cell pixel). By using the two different classes for the inner 
part of the cells and the contour, we minimized under-segmentation errors where two touching 
cells would be connected in the segmentation binary mask. The Ilastik output was then processed 



with a custom Matlab script that applied simple mathematical morphology operations to get rid 
of small erroneous regions, and then used watershedding to expand the inner part of each cell 
into the border pixel regions. The resulting binary segmentation masks cover the entire cell area 
but do not tend to connect independent cell regions together. The chamber cropping and XY drift 
correction operations described above were applied to the Ilastik output. Ilastik project files are 
provided with the rest of the data as examples. 
 
A rudimentary graphical user interface (GUI) was then used to manually curate a random subset 
of the Ilastik segmentation samples to generate a training set. Once a large enough training set 
was generated (we used 3,294 samples for the E. coli mother machine data), pixel-wise weight 
maps were generated (Fig. 1B). Different parts of each training mask were weighted based on the 
formula described in the original U-Net paper [17], where a strong emphasis is put on “border 
pixels”, i.e. pixels that lie on a thin border region separating two cells. Combined with the pixel-
wise weighted cross entropy described below, this extra weight on border pixels forces U-Net to 
learn those separations and not undersegment two cells that are touching. We then added an extra 
step where we set the weight for contour pixels, i.e. pixels on the outer perimeter of cells in the 
binary mask, to 0. The exact contour of cells is hard to determine, even for humans, and we 
found that the Ilastik approach can introduce artifacts in the exact cell contour. To prevent 
overfitting U-Net to exactly the cell contours produced by our training set generation method, we 
added this 1-pixel margin. This step results in training converging significantly faster than the 
case where the exact contour must be matched. 
 
Once the segmentation U-Net was trained, we moved on to creating a training set for the tracking 
U-Net model. We used the trained segmentation U-Net to predict segmentation masks on the two 
training movies. This segmentation output was then used to generate the training set for tracking 
with another simple GUI. In the GUI, a random segmented cell from the training movies is 
presented and the user manually generates the training set by clicking on the cell in the frame at 
the next timepoint, or on the daughter cell if a division happened between those timepoints. For 
tracking cells in the mother machine, we generated a training set of 4,055 samples. 
 
Data augmentation 
An important step when using deep neural networks like U-Net that contain millions of 
parameters to fit is to artificially increase training set size by applying random transformations to 
the inputs and outputs. This “data augmentation” step not only increases training set size but 
ensures that the model does not overfit the data and that it can easily generalize to new inputs, 
for example those generated with relatively different imaging conditions. 
 
Our training data was augmented on-the-fly with custom Python generators. We implemented 
our own data augmentation functions as we sometimes required finer control over image 
manipulation operations than what the standard Keras functions offered. We used mostly 



standard operations such as random shifting, scaling, rotation and flipping, but we also added 
three non-standard operations, one for elastic deformations as described in the original U-Net 
paper [17] and two for manipulating image contrast to simulate variations in illumination 
between experiments. 
 
U-Net architecture and training 
We used a standard U-Net architecture for the segmentation model, with 5 contraction/up-
sampling levels. For training with the weight maps described above, we implemented our own 
loss function, as pixel-wise weighted binary cross-entropy is not a standard loss function 
available through the Keras API. The model was trained over 200 epochs of 250 steps, with a 
batch size of 10 training samples. As described above, data augmentation operations were 
randomly applied on-the-fly to reduce the risk of over-fitting.  
 
The tracking model is similar to the segmentation U-Net, but differs in two significant ways: The 
input layer contains four components per training sample (image of the previous frame, binary 
mask of the “seed” cell in previous frame, image of current frame, and binary mask of all 
segmented cells in current frame (Fig. 1C)), and the loss function for training it is the categorical 
cross-entropy loss provided by Keras. This categorical cross-entropy will determine whether 
each pixel is categorized as part of the tracked cell in the image, its potential daughter, or the 
background, and attribute misclassification costs accordingly. The model was trained over 400 
epochs of 250 steps, with a batch size of 5 training samples. The same data augmentation 
operations as described above were applied on-the-fly as the network was trained. 
 
Prediction, post-processing and evaluation 
After the tracking step, the data contained in the output images was reformatted into a more user-
friendly structure using Matlab. The pixels attributed to each cell in the tracking output were 
matched with the pixels in the segmentation mask for the current frame, and a score matrix for 
this specific chamber and timepoint was generated. Conflicts, for example where two cells get 
the same attribution score from the same cell in the previous frame, are discarded with simple 
rules where one cell simply becomes a “new” cell that appears and forms a new lineage tree. The 
low error rate at the U-Net tracking step allows us to use such simplistic methods and still get 
good results, but more elegant tracking algorithms [29] using our tracking prediction maps as 
inputs could further increase performance. The code also extracts morphological features like 
single cell length and area, as well as fluorescence levels associated with the fluorescence images 
in the movie. 
 
After running our pipeline on the evaluation time-lapse movie, we quantified the performance by 
randomly selecting samples. Segmentation performance was evaluated manually, as over- and 
under-segmentation errors can arise if the evaluation set and evaluated output disagree on the 
exact time-point at which a cell divides, which can sometimes be hard to discern. For tracking, 



an evaluation set of 1,040 samples was generated following the same procedure as for generating 
training sets. 
 
Data analysis with generation information 
Fluorescence data extracted from the cell lineages were used to measure correlation coefficients 
(corrcoef function in Matlab) between mother cell mean GFP levels and daughter, 
granddaughter, or great granddaughter mean GFP levels. In this analysis, we measured the GFP 
level for the mother cell using the time interval immediately prior to division and considered one 
cell cycle worth of data. We compared this to one cell cycle worth of GFP data for the daughter 
(or granddaughter, great granddaughter) immediately following division from the mother cell. 
 
Autocorrelation data (xcov function in Matlab) for each mother cell were normalized to the value 
at zero time lag.  
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Figure Captions 
 
Figure 1. Core elements of the DeLTA pipeline and segmentation and tracking results. (A) 
Schematic representation of mother machine device. Mother cells are trapped at one end of the 
chamber and their progeny is progressively flushed out of the chamber, into the main nutrient 
flow channel. Fluorescent reporters can be used to monitor single-cell gene expression. Scale bar 
is 5µm in length. (B) Inputs and outputs of the segmentation U-Net. Note that the weight maps 
are only used for training and are not produced at the prediction step. (C) Inputs and outputs for 
the tracking U-Net. (D) Representative kymograph of segmentation and tracking for a single 
chamber. Black lines highlight detected divisions and mother-daughter relationships. 
 
Figure 2. Representative single-cell time-lapse image data demonstrating wealth of 
information extracted from movies. (A) Mean GFP fluorescence over time for mother cell and 
its progeny. (B) Cell length, (C) growth, and (D) timing of cell division events over time for the 
mother cell. Note that these morphological properties are also recorded for all progeny, but are 
not shown here for visual clarity. (E) Kymograph of chamber containing mother cell and 
progeny presented in (A – D).  
 
Figure 3. Analysis of fluorescence correlations in the lineage tree. (A) Mean GFP 
fluorescence for the mother cell compared to daughter, granddaughter, or great granddaughter 
cells. Fluorescence values for the mother are derived from the cell cycle immediately prior to 
division, while fluorescence for the daughter, granddaughter, or great granddaughter come from 
the cell cycle immediately following division from the cell in the previous generation (e.g. from 
the mother when considering the daughter). (B) Correlation coefficient between mother cell 
mean GFP values and its progeny. (C) Autocorrelation of the GFP signal for the mother cell. 
Error bars show standard deviation around the mean. 
  



 

Training 
 Segmentation Tracking 
Set size 3,294 chambers (~21,000 cells) 4,055 tracking events 
Set construction time ~4 hours ~4 hours 
U-Net training time 3 hours 20 minutes 8 hours 

Evaluation 
 Segmentation Tracking 
Set size 1,001 chambers (6,311 cells) 1,040 tracking events 
Errors (rate) 9 (0.14%) 11 (1.06%) 
Sample processing time 12 msec (/chamber) 3.6 msec (/cell) 
Frame processing time 212 msec ~400 msec (depending on # of cells) 
Movie processing time 
(262,634 cells) 

9 minutes 2 seconds 13 minutes 8 seconds 

 

Table 1. Key performance numbers for training and evaluation of the DeLTA algorithm. 
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