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Abstract  
Understanding the genetic regulatory code that governs gene expression is a primary, yet             

challenging aspiration in molecular biology that opens up possibilities to cure human            

diseases and solve biotechnology problems. However, the fundamental question of how           

each of the individual coding and non-coding regions of the gene regulatory structure             

interact and contribute to the mRNA expression levels remains unanswered. Considering           

that all the information for gene expression regulation is already present in living cells, here               

we applied deep learning on over 20,000 mRNA datasets to learn the genetic regulatory              

code controlling mRNA expression in 7 model organisms ranging from bacteria to human.             

We show that in all organisms, mRNA abundance can be predicted directly from the DNA               

sequence with high accuracy, demonstrating that up to 82% of the variation of gene              

expression levels is encoded in the gene regulatory structure. Coding and non-coding            

regions carry both overlapping and orthogonal information and additively contribute to gene            

expression levels. By searching for DNA regulatory motifs present across the whole gene             

regulatory structure, we discover that motif interactions can regulate gene expression levels            

in a range of over three orders of magnitude. The uncovered co-evolution of coding and               

non-coding regions challenges the current paradigm that single motifs or regions are solely             

responsible for gene expression levels. Instead, we propose a holistic system that spans all              

regions of the gene structure and is required to analyse, understand, and design any future               

gene expression systems. 
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1. Introduction 

Gene expression governs the development, adaptation, growth, and reproduction of all living            

matter. Understanding its regulatory code would provide us with the means to cure diseases,              

including heterogeneous tumours ​1​, and to control protein production for biotechnology           

purposes ​2,3​. Although transcriptional regulation has been a central area of research in the              

past decades, with advances that enable accurate measurement of mRNA levels ranging            

from just a few copies to several thousand per cell ​4–7​, we still cannot quantify to what extent                  

the DNA code determines mRNA abundance, nor understand how this information is            

encoded in the DNA. Lack of such quantitative understanding hinders the potential of             

accurately controlling mRNA and protein levels by simply manipulating the sequence of the             

four DNA nucleotides.  

A strong agreement between protein and mRNA levels in multiple organisms shows that up              

to 90% of the variation of protein abundance is attributed to mRNA transcription rather than               

protein translation ​4,5,7,8​. mRNA transcription is controlled via the gene regulatory structure,            

comprised of coding and ​cis​-regulatory regions that include promoters, untranslated regions           

(UTRs), and terminators each encoding a significant amount of information related to mRNA             

levels ​9​. For instance, in ​Saccharomyces cerevisiae​, properties of individual ​cis​-regulatory           

regions can explain up to half of the variation in mRNA levels ​10–15​. Considering that each                

part of the gene structure controls a specific process related to mRNA synthesis and decay               
9,16,17​, as well as the overall transcription efficiency ​18​, all gene parts must be concerted in                

perfectly timed execution in order to regulate expression. However, despite the apparent            

importance of non-coding regions, it remains unclear how they cooperatively regulate gene            

expression. 

Much of the current knowledge on quantitative regulation of gene expression is based on              

high-throughput screens of thousands of synthetic sequences studied in isolation from their            

native gene regulatory structures ​19–21​. These screens introduce random mutations in a            

non-coding region of DNA, in order to determine the effects of the mutations on gene               

expression. Although a ​de facto standard for expression tuning in synthetic biology, these             

techniques are (i) laborious and require expensive and highly-sophisticated equipment ​22​, (ii)            

are biased towards specificities of mutagenesis ​23​, and (iii) are often restricted to particular              

experimental conditions. The major problem, however, is that the biological sequence space            

is so large that it cannot be explored experimentally or computationally ​24​. For instance, to               

analyze all the possible combinations of the four nucleotides in a 20 bp promoter would               

require iterating over a trillion (4​20​) synthetic sequences. This limits the experimental studies             
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to individual regulatory gene parts in the context of single reporter genes. Similarly, with              

natural systems, the majority of studies on mRNA transcription in the context of transcription              

factor (TF) binding ​25​, chromatin accessibility ​26,27 and Chip-seq or DNase-Seq data ​28,29​,             

focus solely on promoter regions ​30​. Therefore, both the current natural and synthetic             

approaches are fundamentally limited in their ability to study the relationship between the             

different parts of the gene regulatory structure and their cooperative regulation of            

expression. 

Here, we consider that DNA sequences of all living systems, through evolution, have been              

fine-tuned to control gene expression levels. To learn from the natural systems, we analysed              

100,000 native gene sequences in over 20,000 RNA-Seq experiments from seven model            

organisms, including ​Homo sapiens​, ​Saccharomyces cerevisiae​, ​and Escherichia coli​. In the           

yeast ​S. cerevisiae​, the variation of gene expression per gene across the entire repertoire of               

different experimental conditions was 340 times lower than the variation of expression levels             

across all genes. Based on this high signal-to-noise ratio, our deep neural networks learned              

to predict gene expression levels directly from the native DNA sequences, without the need              

for screening experiments using synthetic DNA. Prediction of gene expression levels was            

highly accurate in all model organisms, and in ​S. cerevisiae (​R​2​test = 0.82) showed strong               

agreement with fluorescence measurements from independent published experiments. We         

demonstrated that, in both eukaryotes and prokaryotes, mRNA levels are determined not            

merely by individual coding and ​cis​-regulatory regions but rather additively, by the entire             

gene regulatory structure. As the coding and ​cis​-regulatory regions contained both           

orthogonal as well as overlapping information on expression levels, the entire gene codon             

distribution could be predicted merely from the adjacent ​cis​-regulatory regions (​R​2​test = 0.52).             

Further mutational analysis of orthologous genes in 14 yeast species confirmed that each             

gene is a single co-evolving unit. Finally, we reconstructed the regulatory DNA "grammar" of              

S. cerevisiae by measuring the co-occurrence of sequence motifs extracted from the deep             

models and present across the ​cis​-regulatory regions. These motif co-occurrences were           

found to be highly predictive of expression levels and could differentiate the expression             

levels of single motifs in a range of over 3 orders of magnitude. 
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2. Results 
 
The dynamic range of gene expression levels is encoded in the DNA sequence 

To explore the relationship between DNA sequence and gene expression levels, we            

compiled a dataset of 3025 high-quality ​Saccharomyces cerevisiae RNA-Seq experiments ​31           

covering virtually all available experimental conditions from 2365 unique studies. By sorting            

4975 protein-coding genes (Methods, Table S1-1) according to their median expression           

levels across the experiments (expressed as TPM values, i.e. Transcripts Per Million), we             

observed a striking trend in the expression levels (Fig 1A): 85% of the yeast protein-coding               

genes varied less than 1 relative standard deviation across the RNA-Seq experiments (​RSD             

= ​σ​/​μ​) (Fig 1B, Table S1-2). With 79% of protein-coding genes, the expression levels per               

gene changed merely within a one-fold range of values in ⅔ of the RNA-Seq experiments               

(Fig 1A). Conversely, the dynamic range of median TPM values across all the genes              

spanned over 4 orders of magnitude. The variance of expression levels within the whole              

genome was on average 340 times higher than the variance per gene across the              

experiments (Fig 1C). The most variable genes across the entire range of biological             

conditions (Fig 1B: ​RSD > 1) were significantly (Hypergeometric test BH adj. ​p​-value < 0.05)               

enriched in metabolic processes, sporulation, and cell cycle (Fig S1-2), while the most stable              

genes (​RSD < 1) were significantly (Fisher's exact test ​p​-value < 1e-16) enriched in              

TFIID-type constitutive promoters ​26​.  

 

To test if the observed dynamic range of gene expression levels is encoded in the DNA, we                 

extracted the DNA sequence of the regulatory and coding regions of all the genes within one                

relative standard deviation of expression variation (Fig 1B: 4238 genes with ​RSD < 1). A               

total of 2150 bp of regulatory sequences ​9,11,14,15,32–36​, 64 codon frequencies from coding             

regions ​37 and additional 8 mRNA stability variables ​13​, all known to be important for               

expression regulation, were used for prediction of mRNA levels (Fig 1D, Fig S1-1, Methods).              

Using the DNA sequence information as input, we built a regression model based on deep               

convolutional neural networks (CNNs) and trained it to predict the median gene expression             

levels (Fig 1E, Methods). The median value was a good estimator of the expression              

differences between the genes, as it was strongly correlated with the first principal             

component of the entire expression matrix (Pearson’s ​r ​= 0.990, ​p​-value < 2e-16, Fig S1-3).               

To avoid potential technical biases related to read-based sequencing ​38​, mRNA levels were             

corrected for gene length bias (Fig S1-4, Methods). Overall, a total of 3433 gene sequences               

were used for training the model, 381 for tuning the model hyperparameters and 424 for               
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testing. After optimizing the model (Methods), its predictive performance on the test set (​R​2​test              

= 0.822, Fig 1F, Table S1-3) demonstrated that the DNA encodes the majority of the               

information about mRNA expression levels.  

 

To validate the trained model on independent data, we used two published experimental             

datasets, where the effects of either promoter ​39 or terminator ​40 sequences were measured              

in synthetic constructs combined with fluorescence reporters. For both studies, we only            

inferred expression levels based on the deep neural network trained on natural genomic             

sequences (Fig 1E,F, Methods), meaning that the model was not exposed to the data from               

these studies in its training phase. The first dataset comprised measured activities of ~900              

native yeast promoters recorded in synthetic constructs with a single strong terminator            

(ADH1) and a YFP fluorescence reporter, in 10 different conditions ​39​. In all 10 conditions,               

the predictions of mRNA levels inferred based on the DNA sequences of the synthetic              

constructs and YFP codon frequencies were in strong agreement (Pearson’s ​r ​from 0.570 up              

to 0.718, ​p​-value < 1e-16) with the experimental YFP readouts (Fig 1G: median YFP readout               

shown, Fig S1-5). Similarly, the second experimental dataset ​40 contained expression           

measurements of over 5000 terminators with a fixed strong promoter (TDH3) and a GFP              

fluorescence reporter. Despite the fact that predictions based on these synthetic constructs            

were only moderately correlated (Pearson’s ​r = 0.310, p < 1e-16) with the measured protein               

fluorescence intensities (Fig S1-5), this result was in fact stronger than the correlation             

between reporter fluorescence and measured mRNA abundances reported in the original           

study (Pearson’s ​r​ = 0.241) ​40​.  

 

Equally as with yeast, we processed an additional 18,098 RNA-Seq experiments from 1             

prokaryotic and 5 eukaryotic model organisms (Table S1-1, Methods), which displayed           

similar properties as yeast (Table S1-2). The organisms were selected to cover the whole              

known range of genome regulatory complexity, from 892 genes/Mbp (​Escherichia coli​) to 6             

genes/Mbp (​Homo sapiens​), which is known to affect the gene structure and regulation ​41​.              

After training the models for each organism, the predictive power on test data (​R​2​test​) varied               

from 0.394 for ​Mus musculus to 0.725 for ​Drosophila melanogaster (Fig 1H, Table S1-3).              

Overall, the predictions were less accurate for higher eukaryotes, which could be attributed             

to the increase in transcriptional complexity, e.g. due to alternative splicing ​42​, expression             

differences across tissues ​43​, and distant enhancer interactions ​44–47​, which were not            

accounted for in the present models. The prediction performance was thus correlated            

(Pearson’s ​r = 0.616, ​p​-value < 3e-3) with the genomic complexity of the model organisms               
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(Fig S1-6). Nevertheless, the average performance across model organisms (​R​2​test​) of 0.6            

(Fig 1H) indicated that the majority of mRNA expression differences in all organisms can be               

predicted directly from the DNA.  

 

 
Figure 1. The dynamic range of gene expression levels is encoded in the DNA sequence. ​All results shown                  

are with ​S. cerevisiae​, except with figure (H). (A) Expression levels of protein-coding genes across 3025                

RNA-seq experiments. Inset: distribution of genes with a relative standard deviation (​RSD = ​σ/μ​) below 1. (B)                 

Experimental variation of the gene expression levels expressed as ​RSD​. (C) Distribution of ratios between the                

variance of expression levels within a genome and the variance of expression levels per gene across the                 

experiments. (D) Schematic diagram of the explanatory variables used for modeling, with distributions of the               

sequence lengths in the regions where the lengths varied. "TSS" denotes the transcription start site and "TTS"                 

the transcription termination site. (E) The optimized deep neural network (NN) architecture, where “conv” denotes               

convolutional NNs, “FC” fully connected layers, and “max-pool” max-pooling layers. The values denoting sizes of               

parameters layers​, ​stride​, ​kernels​, ​filters​, ​max-pooling, and ​dilation are specified. (F) Experimentally determined             

versus predicted expression levels with the ​S. cerevisiae model. Red line denotes least squares fit. (G)                

Experimental fluorescence measurements ​39 versus predicted expression levels. Red line denotes least squares             

fit. (H) ​R​2​ on test dataset across 7 model organisms. 

 

Coding and cis-regulatory regions additively contribute to gene expression prediction 
To evaluate the importance of each part of the gene regulatory structure (Fig 1D) for the                

prediction of expression levels, we measured the amount of relevant information in each             

regulatory region. Similarly to the complete model (Fig 1E,F), we trained multiple CNN             

models independently on promoter, 5’-UTR, 3’-UTR, and terminator regions as well as their             

combinations. To justify the use of deep convolutional networks, as a baseline we performed              
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shallow modeling using a variety of regression algorithms, including multiple linear           

regression, elastic net, random forest, and support vector machines with nested           

cross-validation (Fig 2A, Methods). The single regulatory regions alone could explain less            

than 28% of variation in mRNA abundance levels, which suggested that the entire gene              

structure was important for controlling gene expression levels (Fig 2B, Fig S2-1). Each DNA              

region thus additively contributed to the prediction of mRNA levels and increased model             

performance, with the model trained on all four regulatory regions accounting for            

approximately 50% of the mRNA abundance variation (​R​2​test = 0.492, Fig 2A,B, Table S2-1).              

In contrast, none of the shallow models could predict gene expression levels from the              

regulatory sequences (​R​2​test < 0.031, Fig 2A, Table S2-2). Despite the observation that the              

sole mRNA stability variables were also somewhat informative about gene expression levels            

(​R​2​test = 0.378, Fig 2A), they did not improve the overall model performance next to the codon                 

frequencies and regulatory sequences, likely due to their information redundancy with these            

variables (Figure S2-2: ​R​2​test ​was 0.779 when predicting mRNA stability variables using            

regulatory sequences). 

 

On the other hand, the codon frequencies alone could explain well over 50% of mRNA level                

variation both with shallow and deep models (​R​2​test was 0.681 and 0.690, respectively, Fig              

2A, Table S2-2). Considering that the amount of information was comparable to, or greater,              

than that of the regulatory sequences, we attempted to measure the amount of information              

overlap in these regions. We thus trained a CNN to predict the entire codon frequency vector                

for each gene using only its regulatory regions (Fig 2C, Methods), which showed that over               

58% of the gene’s codon frequency variation was directly encoded in its adjacent regulatory              

regions (Fig 2D: ​R​2​test = 0.582). This result suggested that the coding and noncoding              

regulatory regions might have co-evolved under common evolutionary pressure. To test this            

hypothesis, we composed a dataset of cis-regulatory regions of orthologous genes from a             

diverse set of 14 yeast species ​48 (Table S2-3) and compared the mutation rates between               

the different regions of the yeast gene structure (Methods). The mutation rates of the              

promoter and terminator regions displayed a moderate positive correlation (Pearson’s ​r =            

0.423 and 0.471, ​p​-value < 1e-16, respectively) with the mutation rates of the yeast coding               

regions (Fig 2E,F), supporting the co-evolution hypothesis.  
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Figure 2. Coding and cis-regulatory regions      

additively contribute to gene expression     

prediction. ​(A) Test ​R​2 with different      

combinations of ​cis​-regulatory regions and deep      

modeling. (B) Test ​R​2 with different      

combinations of coding (codon prob.), mRNA      

stability (see Fig S1-1C) and ​cis​-regulatory      

regions, using shallow and deep modeling. (C)       

Schematic depiction of the regulatory regions as       

input, and coding regions (codon prob.) as       

target variables with deep neural networks (NN).       

(D) Actual versus predicted distribution of codon       

probabilities obtained with models obtained     

using strategy in (C). Red line denotes least        

squares fit. (E) Evolutionary substitution rates in       

promoter vs. coding regions in orthologous      

genes of 14 yeast species. Red line denotes        

least squares fit. (F) Evolutionary substitution      

rates in terminator vs. coding regions in       

orthologous genes of 14 yeast species. Red line        

denotes least squares fit.  

 

Deep learning identifies specific DNA positions controlling gene expression levels 

To explore the information learned by the deep neural network (Fig 1E,F) and identify the               

specific parts of the DNA sequences that were most predictive of gene expression levels, we               

developed a pipeline for evaluating the ​relevance of each specific DNA sequence position in              

relation to the predicted gene expression levels (Fig S3-1, Methods). Briefly, we removed             

sliding windows of 10 base pairs (Fig S3-2) along each gene's regulatory sequence and              

compared the model's response to the occluded sequences with predictions on the original             

unmodified DNA ​49,50​. The occluded parts of the input DNA sequences that significantly             

deviated (exceeding ± 2 standard deviations) from the original data were regarded as the              

most relevant for gene expression changes (Fig 3A). The largest density of relevant regions              

was obtained in direct vicinity of the boundary sites defining regulatory and coding             

sequences, to which the sequence data were anchored (see Fig 1D). On average 214 base               

pairs (bp) in promoters, 74 bp in 5’UTRs, 94 bp in 3’UTRs, and 127 bp in terminator regions                  

per gene significantly affected the prediction of gene expression levels (Fig 3A). ​Relevance             

profiles of promoter regions were also strongly correlated (Pearson’s ​r = - 0.7, ​p​-value <               

1e-16) with experimentally measured nucleosome occupancy scores ​27 (Fig S3-3), which           
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suggested that the deep learning algorithms uncovered the intrinsic molecular information           

encoded in the nucleotide composition. 

 

Clustering the gene regulatory regions according to their expression ​relevance profiles           

(Methods) identified 4 stable clusters that significantly (Rank sum test ​p​-value < 1e-4)             

differed in the positional information (Fig 3B) and were significantly (Rank sum test ​p​-value <               

1e-16) informative about gene expression levels (Fig 3D). Cluster 4, which contained highly             

expressed genes, was significantly (Hypergeometric test ​p​-value < 1e-10) enriched in the            

occupied proximal-nucleosome (OPN) regulation strategy as opposed to the depleted          

proximal-nucleosome (DPN) strategy ​51​, which was likely related to the concurrent           

enrichment (Fisher's exact test ​p​-value < 1e-12) of inducible SAGA promoters in the cluster.              

Cluster 4 also comprised genes with higher transcriptional plasticity spanning an over 4-fold             

higher variability of expression levels compared to the other clusters (Levene's test ​p​-value <              

1e-16). As is typical for highly abundant proteins, such as metabolic enzymes, that are linked               

to less defined nucleosome positions and higher dependence on nucleosome remodelling           
51,52​, the cluster was significantly enriched (Hypergeometric test BH adj. ​p​-value < 0.01)             

mostly in metabolic processes (Fig S3-4). In contrast, Cluster 1, with lowly expressed genes,              

was related (Hypergeometric test BH adj. ​p​-value < 0.01) to cell cycle regulation and DNA               

repair (Fig S3-4). The largest differences in positional expression relevance were identified            

in promoter and terminator sequences (Fig 3B). For instance, in promoters of lowly and              

highly expressed genes (Clusters 1 and 4, respectively), occluding the original sequences            

yielded opposite effects. These positional differences were independent of the overall           

nucleotide composition (Fig S3-5), which indicated that specific regulatory sequences were           

likely responsible for defining the expression levels. 

 

From the set of all significantly relevant DNA sequences (Fig S3-6), we identified the specific               

regulatory DNA motifs important for predicting expression levels using clustering and           

alignment (Methods). The highest quality motifs were obtained with the 80% sequence            

identity cutoff, according to the following criteria: (i) genome coverage, (ii) the amount of              

retained relevant sequences in motifs (seq. coverage) and (iii) % overlap with known motifs              

in databases (Table S3-1). Over 2200 expression related regulatory DNA motifs were            

uncovered across all 4 regulatory regions (Fig 3E). The majority of motifs were unique to               

each specific region, as analysis of motif similarity across the adjacent regulatory regions             

(Methods) showed that, on average, less than 16% of the motifs significantly (BH adj.              

p​-value < 0.05) overlapped between the regions (Fig 3E, Table S3-2). This further supported              
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our observation that every regulatory region contains additional information related to the            

gene expression levels (see Fig 2A). Further comparison to JASPAR ​53 and Yeastract ​54              

databases (Methods) showed that on average, approximately 13% of the identified motifs            

(Fig 3E) were significantly (BH adj. ​p​-value < 0.05) similar, 38% and 63% respectively, to the                

known transcription factor binding sites (TFBS) recorded in these databases (Fig S3-7). The             

majority of these motifs were identified not only in the promoter but also in the terminator                

region (Fig S3-7), due to the overlap between neighboring genes ​55​. A significant (Rank sum               

test ​p​-value < 1e-8) decrease in GC content in the UTR regions (Fig 3C) indicated that the                 

identified motifs were likely to contain the regulatory DNA signals from UTR regions and              

terminators (Fig 3F, Fig S1-1). This included the 5' UTR Kozak sequences and 3' UTR               

processing DNA elements that are enriched in the thermodynamically less stable A/T            

nucleotides ​11,14,34,56,57​. The deep models therefore successfully identified known regulatory          

signals (Fig 3F) as well as uncovered new regulatory signals across all the gene regulatory               

regions. 

 

Motif co-occurrence uncovers the regulatory rules of gene expression 

To determine the regulatory meaning of the DNA motifs reconstructed from the deep             

learning ​relevance profiles ​(Fig 3F)​, we analysed their informative power relative to the             

specific gene expression levels. ​For this, we calculated the signal-to-noise ratio (​SNR = ​μ​/​σ​)              

of expression levels across genes that carried the identified motifs (Fig 4A, Fig S4-1). The               

spread of expression levels of motif-associated genes was over 2.5-fold larger than its             

expected (median) expression level (Fig S4-2), resulting in a low median ​SNR of under 0.4               

(Fig 4A). Of the full 4 order-of-magnitude range of gene expression levels observed in the               

data (Fig 1A), only 57% could be recovered with the motifs, as indicated by the average                

expression level of genes per associated motif (Fig 4B, Fig S4-1B). The range of gene               

expression levels for the identified motifs were thus too dispersed and overlapped, indicating             

that the predictions made by the model (Fig 1F, Fig 3B) were likely not based on single motif                  

occurrences. 
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Figure 3. Deep learning identifies the DNA positions predictive of expression levels. ​(A) ​Relevance ​profiles               

across ​cis​-regulatory region sequences obtained by querying the deep models (Fig 1F). The decrease in               

relevance of UTR sequences at left edges was due to the large number of sequences that were shorter than the                    

analysed regions (see Fig 1D). (B) Clustered ​relevance profiles across the ​cis​-regulatory region sequences. (C)               

GC content in the ​cis​-regulatory regions. (D) Median expression levels of genes in the clustered ​relevance                

profiles. (E) Amount of regulatory DNA motifs uncovered in the ​cis​-regulatory regions and amount of motif                

overlap between adjacent regions as well as with the Jaspar database ​53​. (F) Examples of regulatory DNA motifs                  

uncovered across all the ​cis​-regulatory regions that correspond to published motifs and sequence elements (see               

Table S1-1C). "TFBS" denotes transcription factor binding sites. 

 

Alternatively, the observed interactions across the regions (Fig 2A,B) and positional           

differences in expression levels (Fig 3B) suggested that statistically measured interactions of            

motifs might carry a greater indication of expression levels than single motifs (Fig 3F). We               

therefore searched for patterns of co-occurring motifs, i.e. motifs that are more likely to be               

present in genes together with other motifs than alone, and termed them regulatory 'rules'.              

Here we used market basket analysis - a technique that is commonly used for identifying               

frequently bought items in market research ​58 (Methods). The number of identified rules             
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corresponded to the quality of identified motifs, and was largest at the 80% sequence              

identity cutoff, decreasing markedly when increasing the identity cutoff (Table S3-1). A total             

of 9,962 rules were significantly overrepresented (BH adj. ​p​-value ​< 0.05) in at least 3 genes                

and across 93% of the analysed protein coding genome, and spanned 62% of all unique               

motifs that represented 86% of all motif occurrences (Fig 4C, Fig S4-3). Importantly, the              

rules were frequently found in smaller groups of genes (at most 10 genes) and were crucial                

for discerning genes with low and high expression levels, as the dynamic range of              

expression values decreased by 2-fold in rules present in more than 10 genes (Fig 4C).               

Similarly, rules comprised of a larger number of co-occurring motifs (Fig 4C: rules of up to 6                 

motifs found) were also sparser and occurred in smaller groups of genes (Fig S4-4). In total,                

88% of the significant rules (BH adj. ​p​-value < 0.05) co-occurred across the regulatory              

regions, compared to the rest that were present within single regions (Fig 4E). This resulted               

in over 6-fold more connections between motifs in promoters, terminators, and 3’-UTR            

regions than within any single region, including promoters (Fig 4E).  

 

By comparing the genes that carry the single motifs to those with co-occurring motifs in               

rules, we observed that the range of average expression values of genes spanned by the               

rules exceeded those of single motifs by over 11-fold (Levene’s test ​p​-value < 1e-16) (Fig               

S4-2) and recovered, in total, 84% of the whole range of gene expression levels (Fig 4B, Fig                 

1A). Furthermore, a significantly (Rank sum test ​p​-value < 1e-16) narrower window of             

expression levels was observed with rule-associated genes compared to single motifs, as            

the variance of expression levels was over 16-fold lower (Fig S4-2). This shows that the               

genes containing co-occurring motifs fall under the precise control of the specific            

co-occurrence rule. The signal-to-noise ratio, which exceeded 1 for over 60% of rules, in              

contrast to motifs, of which 78% were below 1 (Fig 4A, Fig S4-1B), demonstrated that the                

precision of expression control of the rule-associated genes was, on average, 3-fold higher             

(Rank sum test ​p​-value < 1e-16) than of single motifs (Fig S4-1). This again showed the                

presence of statistically measurable interactions across the entire gene regulatory structure,           

but this time at the level of motifs, thus supporting the existence of a coevolved interacting                

regulatory DNA grammar.  

 

To analyse how differences in the motif co-occurrence context across the regulatory regions             

affect expression levels of genes, we grouped the motif co-occurrence rules, such that one              

motif was left unchanged, while the other motifs differed across the genes (Fig 4E, rules with                

at least 3 motifs were used). The motif co-occurrence context across the regulatory regions              
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repurposed the common motif in a range of up to 1484-fold change of expression levels. Of                

the 1079 such rule sets that repurposed a given motif, 55% changed by at least one order of                  

magnitude of expression levels (Fig 4E). The repurposed motifs included significant (BH adj.             

p​-value < 0.05) hits to a range of Jaspar TFBS in promoter regions, which co-occurred with,                

and were repurposed by, motifs across all the ​cis​-regulatory regions (Table S4-1). For             

example, the largest range of expression levels was observed with a group of NHP6B-like              

motifs (SGD:S000002157, 648-fold change), a TFBS that binds to and remodels           

nucleosomes. These co-occurred with motifs from the adjacent regulatory regions that           

govern the expression levels of many essential yeast genes (Fig 4F), including those             

involved in DNA replication (CDC6), ribosomal RNA processing (RIO2), and coding for            

nuclear (NSP1) and cell membrane (EXG1) proteins. Furthermore, a similar trend was            

observed by an alternative grouping of the motif co-occurrence rules, such that only one              

motif differed across the genes. Even a single motif substitution could achieve up to a               

605-fold change of expression levels, where 24% of such rulesets changed by at least one               

order of magnitude of expression levels (Fig 4G). Finally, an analysis of genes sets              

containing the most widespread motif co-occurrence rules (that covered 20 or more genes)             

did not show any significant enrichment of specific cellular functions, which suggested that             

the uncovered gene expression grammar is shared across genes of all functions and is an               

integral part of the basic regulatory gene structure (Fig 1D). 

 

Since the regulatory regions were found to be coevolved with the coding region (Fig 2E,F)               

and highly predictive of the codon frequencies (Fig 2D), we analysed the properties of codon               

frequencies across the motifs and rules similarly as with the expression levels. The range of               

median Euclidean distances between codon frequencies, defined by the co-occurring motifs           

in rules, exceeded that of the single motifs by 6.5-fold (Levene's test ​p​-value < 1e-16),               

whereas the average variance decreased almost 5-fold (Rank sum test ​p​-value < 1e-16, Fig              

S4-5). This showed that, compared to the motifs, co-occurrence rules defined more            

conserved ranges of codon frequencies, and that the regulatory DNA grammar learned by             

the deep models and highly predictive of gene expression levels (Fig 1F) was based on the                

combined properties of regulatory as well as coding regions.  

 

 

 

 

 

14 



 
 
Zrimec et al. 2019 

Figure 4. Motif co-occurrence uncovers the regulatory rules of gene expression. ​(A) Distribution of the               

signal-to-noise ratio (​SNR​) of expression levels across genes carrying the identified motif co-occurrence rules.              

Inset: comparison of ​SNR with single motifs and motif co-occurrence rules. (B) The amount of the full observed                  

range of gene expression levels, which could be retrieved by the average expression level across genes defined                 

either by single motifs or motif co-occurrence rules. (C) The amount of genes in a motif co-occurrence rule versus                   

the average expression level across genes, defined by that rule, with increasing statistical significance levels.               

Inset: distribution of the number of co-occurring motifs in significant (​FDR < 0.05) rules. (D) Distribution of motif                  

co-occurrence rules across single or multiple ​cis​-regulatory regions, according to the locations of the co-occurring               

motifs. (E) Distribution of gene expression levels with groups of motif co-occurrence rules that have one rule in                  

common (ie. unchanged). (F) Illustration of four genes (CDC6, RIO2, NSP1, EXG1) common to a group of motif                  

co-occurrence rules that span a 648-fold range of gene expression levels. Common to all these rules is a NHP6B                   

transcription factor binding site (BH adj. ​p​-value < 0.005, SGD:S000002157 ​59​) in their promoter (blue line),                

whereas all diverge in possessing 2 to 4 other DNA motifs (red lines) across the whole gene regulatory structure,                   

which define their expression levels. Red lines in the histogram denote the specific expression levels of the                 

genes. (G) Distribution of gene expression levels with groups of motif co-occurrence rules that differ by a single                  

motif. 
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3. Discussion 
In the present study we asked the question: to what extent are gene expression levels               

encoded in the coding and ​cis​-regulatory DNA regions of the gene regulatory structure? This              

question followed our observation that with all known biological variation of gene expression,             

based on a collection of RNA-Seq experiments across virtually all to-date tested conditions,             

79% of genes were merely within a ± 1-fold change of their median expression levels in ⅔ of                  

the conducted experiments (Fig 1B). By training deep neural networks on the sequences             

from the entire gene regulatory structure (Fig 1D), we demonstrated that most gene             

expression levels in ​Saccharomyces cerevisiae ​are predictable using only DNA encoded           

information (Fig 1F: ​R​2​test = 0.822). Therefore, 4 orders of magnitude of the transcriptional              

repertoire can be directly determined from the DNA sequence, irrespective of the            

experimental condition. Of course, this statement does not object the reality that regulation             

of gene expression can by highly dynamic between different conditions ​9,39​. However, for the              

majority of genes, the biological variation is negligible in comparison to the magnitude of              

expression levels between the genes (Fig 1A), meaning that genes which are highly             

expressed in the majority of conditions will likely always (79% of protein coding genes) be               

highly expressed and vice-versa. These differences in gene expression levels are encoded            

in the DNA and can be read using machine learning. Accordingly, similar results were              

obtained in 6 other model organisms spanning all kingdoms of life (including bacteria and              

higher eukaryotes, such as fruit fly, zebrafish, mouse, and human), that covered the             

complete range of genetic regulatory complexity ​41​, as measured by coding gene density             

(Table S1-1). 

Since individual coding and non-coding parts of the gene regulatory structure (Fig 1D) all              

play a crucial role in the regulation of gene expression ​9​, we inquired which particular regions                

contained the highest amounts of information on gene expression levels. While codon            

frequencies were highly informative about mRNA levels (Fig 2B), we observed that a similar              

amount of information was encoded in the flanking regions (Fig 2A). Indeed, this was further               

supported by the result that deep neural networks could predict the codon usage of a gene                

merely based on that gene’s regulatory sequence (Fig 2C,D). Although the effect of codon              

usage on overall transcription has been widely studied and debated ​60–62​, their surprisingly             

strong effects on transcription, also supported by our results (Fig 2B), have only recently              

started coming to light. The hypothesized mechanisms through which codons affect           

transcription are: (i) effects on nucleosome positioning ​37​, (ii) premature termination of            

transcription, usually by mimicking poly-A signals ​63​, or (iii) mRNA toxicity ​64​. Generally, the              

differences in codon usage between bacterial species can be explained from the            
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dinucleotide content in their non-coding regions ​65 and it is widely assumed that most              

inter-species variation in codon usage is attributed to mutational mechanisms ​60,66​. Within a             

genome, however, since codon usage can be predicted from non-coding regions (Fig 2D),             

and both coding and regulatory regions are similarly predictive of gene expression levels             

(Fig 2B), it is likely that the entire gene regulatory structure undergoes a common selection               

pressure. Accordingly, mutation rates in orthologs from 14 yeast species supported this            

notion of coevolution between coding and non-coding regions (Fig 2E,F) and showed that             

the whole gene regulatory structure is a single co-evolved unit. However, despite the             

ensuing information overlap among the different regions (Fig 2B,D: up to 58%), each region              

additively contributed to mRNA level prediction (Fig 2A,B) and the entire gene regulatory             

structure was important for defining over 82% of the gene expression variability (Fig 1F). 

The multiple regulatory elements of the gene regulatory structure each control, individually or             

jointly, the different DNA processing phases required for mRNA transcription, including           

nucleosome positioning, mRNA synthesis, and mRNA maturation and decay ​9 (Fig S1-1A).            

To control enzyme interactions, the DNA therefore contains a plethora of statistically            

identifiable DNA motifs ​53,54​. The question though remains, which of those motifs are relevant              

signals for regulating mRNA levels? For instance, based on currently identified JASPAR            

motifs ​53​, a significant enrichment of known promoter TFBS was found particularly in highly              

expressed genes (Fig S3-8). However, such an analysis does not uncover which motifs or              

combinations of motifs a predictive model of mRNA abundance (Fig 1E) finds important. To              

resolve this we opened the neural network “black box” (Fig 1E, Fig S3-1) and determined the                

DNA sequences that were causing significant neural network responses (Fig 3A). Although            

thousands of DNA motifs were uncovered across all the regulatory regions (Fig 3D,F),             

individual motifs could not explain the entire dynamic range of gene expression, i.e. the              

same motifs were found in lowly as well as in highly expressed genes (Fig 4A, Fig S4-1).                 

However, by analysing the statistical interactions between motifs, we could identify a much             

greater indication of expression levels than with single motifs. 9,962 combinations of 2 to 6               

motifs were found to co-occur more frequently together than alone across the gene regions              

(Fig 4C) and were informative of almost the entire dynamic range of expression (Fig 4A, B,                

F). Moreover, the motif co-occurrence rules also defined more specific ranges of codon             

usage than single motifs (Fig S4-5), further supporting our results that the entire gene              

regulatory structure (Fig 1D), including both coding and non-coding regions, is a single             

co-evolved interacting unit (Fig 2D, E, F).  
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Finally, we demonstrated that deep neural networks can learn the complex regulatory            

'grammar' of gene expression directly from an organism's genome (Fig 1F,H), without any             

prior knowledge of genetic regulation or the need to perform laborious high-throughput            

screening experiments with synthetic constructs. Despite the fact that the machine learning            

model had never seen the synthetic DNA data, it was able to successfully recapitulate              

fluorescence readouts from published experimental studies ​39,40 and demonstrate a strong           

agreement between model predictions and experimental measurements (Fig 1G, Fig S1-5).           

Furthermore, since the trained models correctly encapsulate the whole interacting regulatory           

DNA grammar that must be present to correctly drive expression, they can be used to               

enhance experimental techniques. For instance, to control gene expression in synthetic           

biology, the standard approach of introducing a variety of terminators (or promoters) in             

combination with strong promoters (or terminators) can in fact lead to large variability in each               

direction of the actual measured levels of expression ​39,40​. Therefore, using the deep learning              

models, researchers can now test the effects of different combinations of regions to select              

the ones that achieve a desired level of gene expression. This can potentially greatly              

decrease experimental noise, accelerate experimental throughput and thus decrease the          

overall costs of microorganism development in biotechnology ​3​.  
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4. Methods 
 

4.1 Data 
Genomic data including transcript and open reading frame (ORF) boundaries were obtained            

from Ensembl (​https://www.ensembl.org/index.html​) ​67​, with the exceptions of organisms         

Saccharomyces cerevisiae C288, for which data were obtained from the Saccharomyces           

Genome Database (​https://www.yeastgenome.org/​) ​59,68 and additional published transcript        

and ORF boundaries were used ​69,70​, and ​Escherichia coli K-12 MG1655, where all data              

were obtained from the RegulonDB database (​http://regulondb.ccg.unam.mx/​) ​71 (Table         

S1-1). Processed raw RNA sequencing Star counts were obtained from the Digital            

Expression Explorer V2 database (​http://dee2.io/index.html​) ​31 and filtered for experiments          

that passed quality control. Raw mRNA data were transformed to transcripts per million             

(TPM) counts ​72 and genes with zero mRNA output (TPM < 5) were removed (Table S1-2).                

Extraction of coding and regulatory regions based on transcript and ORF boundaries and             

processing of mRNA counts yielded gene datasets with paired gene regulatory structure            

explanatory variables (Fig1D, Fig S1-1C) and mRNA abundance response variables (Fig           

1A). Prior to modeling (Fig S1-7), the mRNA counts were Box-Cox transformed ​73 (see              

lambda parameters in Table S1-4). DNA sequences were one-hot encoded, UTR sequences            

were zero-padded up to the specified lengths (Fig 1D), codon frequencies were normalized             

to probabilities, and 8 mRNA stability variables were computed that included: lengths of             

5'UTR, ORF and 3' UTR regions, GC content of 5'- and 3'UTR regions, and GC content at                 

each codon position in the ORF. No significant pairwise correlations were found between the              

variables (Fig S1-4, Table S1-5), except between mRNA counts and ORF lengths, due to the               

technical normalization bias from fragment-based transcript abundance estimation ​74​. To          

obtain mRNA counts that were uncorrelated to gene length, the residual of a linear model,               

based on ORF lengths as the response variable and mRNA counts as the explanatory              

variable, was used as the corrected response variable (Fig S1-4). By testing whether the              

introduced correction could potentially remove biological signal associated with gene length,           

using data from whole molecule RNA sequencing that does not rely on short-read assembly              
75​, no correlation between gene length and its expression was found (Pearson's ​r = -0.08,               

p​-value < 1e-6; Fig S1-8). 

 

4.2 Modeling and statistical analysis 
Supervised shallow methods. The following regression algorithms were used: linear          

regression, ridge regression, lasso, elastic net, random forest, support vector machines with            
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nested cross-validation, and k-nearest neighbour regression ​76​. To include information from           

the regulatory DNA sequences in the shallow models, k-mers of lengths 4 to 6 bp were                

extracted from the regulatory DNA sequences ​77 and used as additional explanatory            

variables. Nested cross validations were performed with these algorithms and GridSearchCV           

using the Scikit–learn package v0.20.3 with default settings. The coefficient of determination            

was defined as [Eq. 1], where ​SS​Residual is the sum of residual   S /SSR2 = 1 − S Residual Total          

squares of predictions and ​SS​Total​ is the total sum of squares.  

 
Supervised deep methods. ​Different neural network architectures were tested that          

combined: (i) 1 to 4 convolutional neural network (CNN) layers ​78 (see tested parameters in               

Table S1-6), which included inception layers ​79 (ii) 1 to 2 bidirectional recurrent neural              

network (RNN) layers ​80​, and (iii) 1 to 2 fully connected (FC) layers, in a global architecture                 

layout CNN-RNN-FC ​30,81–83​. Training the networks both (i) concurrently or (ii) consecutively,            

by weight transfer on different variables (regulatory sequences to CNN and RNN, numeric             

variables to FC), showed that the architecture yielding best results was a concurrently             

trained CNN (3 layers)-FC (2 layers) ​12,84–86​, which was used for all models. The Adam               

optimizer ​87 (Table S1-6) and ReLU activation function ​88 with uniform ​89 weight initialization              

were used. Batch normalization ​90 and weight dropout ​91 were applied after all layers and               

max-pooling ​92 after CNN layers (Table S1-6). In total, 26 hyper-parameters were optimized             

using a tree-structured Parzen estimators approach ​93 at default settings for 1500 iterations             
94,95​. Tests with different sizes of input regulatory sequences showed that whole regions (Fig              

1D) resulted in the most accurate models. To assess model predictions by varying either              

promoter ​39 or terminator ​40 regions, input explanatory variables were constructed based on             

the specified coding (fluorescence reporters codon frequencies) and regulatory regions          

(variable region combined with specified adjacent regions). The Keras v2.2 and Tensorflow            

v1.10 software packages were used. 

  

Statistical hypothesis testing. For enrichment analysis, gene ontology slim terms ​96,97 were            

obtained from the Saccharomyces Genome Database ​59,68 and published promoter          

classifications were used ​26,51​. For statistical hypothesis testing, Scipy v1.1.0 was used with             

default settings. 

 

4.3 DNA sequence analysis 
Analysis of evolutionary rates. ​Multi-sequence alignments of 3800 genes (each gene           

divided into separate promotor, 5’- and 3’UTR, terminator and coding regions) from fourteen             
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fungal species were generated using Mafft v7.407 ​98 with the Linsi algorithm and default              

settings. The resulting 19,000 alignments were analysed with Zorro ​99 to identify regions of              

high sequence variability and possible misalignment that could have a negative effect on the              

phylogenetic signal in the overall sequence. After excluding sites with a confidence score ≤              

0.2, each individual alignment was analysed for 1,000,000 generations in MrBayes v3.2.6 ​100​,             

with the number of substitution types set to one, and a gamma distribution of substitution               

rates, to obtain the estimated mean substitution rate (alpha) for each dataset. 

 
Relevance analysis. To calculate the relevance of different DNA sequences for model            

predictions, defined as [Eq. 2], where ​Y is the model   elevance (Y  ) / YR =  − Y occluded         

prediction, an input dataset with sliding window occlusions was used with the deep models              

to obtain predictions ​49,101 (Fig S3-1). The window size of the occlusions was set to either: (i)                 

whole regions, to analyze the ​relevance of region combinations and sensitivity analysis or (ii)              

10 bp for motif analysis, determined based on the analysis of ​relevance profiles at difference               

occlusion sizes using the FastDTW alignment method ​102 and analysis of the distribution of              

DNA sequence motif sizes in the JASPAR database ​53 (Fig S3-2). For clustering of ​relevance               

profiles, the consensus clustering approach ​103 was used, as implemented in the package             

ConsensusClusteringPlus v1.48.0 with the method Partition around medoids (pam) set to           

50-fold subsampling of 80% of data points and using the Pearson correlation distance. The              

number of clusters (​k​) was determined at ​k = 4, for which the relative consensus did not                 

increase more than 10% (Fig S3-9). 

 
Motif analysis. ​Extraction of relevant sequences, i.e. those that significantly (standard           

deviation ≥ 2) affected gene expression prediction, yielded 169,763 sequences that spanned            

all the analysed genes (​RSD < 1) (Fig S3-5). To identify regulatory motifs, clustering of the                

relevant sequences was performed using CD-HIT v4.8.1 ​104,105​, with recommended settings          

(a ​k​-mer size of 4, 5, and 6 was used in correspondence with sequence identity cutoff 0.8,                 

0.85, and 0.9, respectively) and a cluster size of 5 sequences, based on the amount of                

recovered sequences and unique motifs. Multiple sequence alignment on the clustered           

sequences was performed using Mafft v7.407 ​98​, with the Linsi algorithm and default             

settings. Position weight motifs (PWMs) were processed using the Biopython package v1.73            
106 and motif edges were trimmed below a cutoff of 0.2 bits ​107​. Pairwise comparisons of the                 

PWMs across the regulatory regions and comparisons to JASPAR ​53 (core fungi,            

non-redundant) and Yeastract ​54 databases was performed using Tomtom and Meme suite            

v4.12 ​108,109​, with recommended settings. Motif co-occurrence was analysed using the           

21 

https://paperpile.com/c/UERNHm/S0uf
https://paperpile.com/c/UERNHm/2RYE
https://paperpile.com/c/UERNHm/PIcM
https://paperpile.com/c/UERNHm/WS71+iGpr
https://paperpile.com/c/UERNHm/PmXw
https://paperpile.com/c/UERNHm/pG5p
https://paperpile.com/c/UERNHm/NskG
https://paperpile.com/c/UERNHm/QSkL+iRoS
https://paperpile.com/c/UERNHm/S0uf
https://paperpile.com/c/UERNHm/kOLE
https://paperpile.com/c/UERNHm/ujuX
https://paperpile.com/c/UERNHm/pG5p
https://paperpile.com/c/UERNHm/fYo2
https://paperpile.com/c/UERNHm/ktzj+SJ6L


 
 
Zrimec et al. 2019 

FP-growth algorithm as implemented in Apache Spark v2.4 ​110​, with default settings            

accessed through the Python interface, where ​support​, ​confidence ​and ​lift were calculated            

as defined in ​58​. The statistical significance level of co-occurring motifs was determined using              

the chi-squared test ​111​. Python v3.6 and R v3.6 were used throughout. 
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