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Author Summary: In this work, we utilize genetic algorithms (GA) to operate on the internal rule 
set of a computational of the human immune response to injury, the Innate Immune Response 
Agent-Based Model (IIRABM), such that it is iteratively refined to generate cytokine time series 
that closely match what is seen in a clinical cohort of burn patients.  At the termination of the GA, 
there exists an ensemble of candidate model parameterizations which are validated by the 
experimental data;   
 
Abstract 
Introduction: Agent-based modeling frequently used modeling method for multi-scale 
mechanistic modeling. However, the same properties that make agent-based models (ABMs) well 
suited to representing biological systems also present significant challenges with respect to their 
construction and calibration, particularly with respect to the large number of free parameters often 
present in these models. The challenge of dealing with parameters is further exacerbated due to 
the fact that a great deal of phenotypic and clinical heterogeneity can be attributed to intrinsic 
genetic/epigenetic variation manifesting as functional parameter variation. As a result, effectively 
representing biological populations with ABMs requires dealing with very large multi-dimensional 
parameter spaces that exponentially increase the computational demands for their use. We have 
proposed that various machine learning (ML) and evolutionary computing approaches (such as 
genetic algorithms (GAs)) can be used to more effectively and efficiently deal with parameter 
space characterization; the current work applies GAs to the challenge of calibrating a complex 
ABM to a specific data set in a fashion that preserves the parameter spaces required to deal with 
biological heterogeneity.  
Methods: This project uses a GA to fit a previously validated ABM of acute systemic inflammation, 
the Innate Immune Response ABM (IIRABM) to clinical time series data of systemic cytokine 
levels. The genome for the GA is a vector generated from the IIRABM’s Model Rule Matrix (MRM), 
which is a matrix representation of not only the constants/parameters associated with the 
IIRABM’s cytokine interaction rules, but also the existence of rules themselves. Capturing 
heterogeneity is accomplished by a fitness function that incorporates the sample value range 
(“error bars”) of the clinical data. 
Results: The GA-enabled parameter space exploration resulted in a set of putative MRM 
parameterizations which closely (though not perfectly) match the cytokine time course data used 
to design the fitness function.  The number of non-zero elements in the MRM increases 
significantly as the model parameterizations evolve towards a fitness function minimum, 
transitioning from a sparse to a dense matrix.  This results in a model structure that more closely 
resembles (at a superficial level) the structure of data generated by a standard differential gene 
expression experimental study, in that there are a small number of powerful causative correlations 
and a much larger number of weaker/less significant (individually) connections. 
Conclusion: We present an HPC-enabled evolutionary computing approach that utilizes a GA to 
calibrate a complex ABM to clinical data while preserving biological heterogeneity. The integration 
of machine learning/evolutionary computing, HPC and multi-scale mechanistic modeling provides 



a pathway forward to more effectively represent the heterogeneity of clinical populations and their 
data. 
  
 
Introduction 
Agent-based modeling is an object-oriented, discrete-event, rule-based, spatially-explicit, 
stochastic modeling method.  Agent-based modeling is a powerful technique for representing 
biological systems;  rules are derived from experimentally observed biological behaviors, and the 
spatially-explicit nature of the models give it an inherent ability to capture 
space/geometry/structure, which facilitates the ability of biomedical researchers to express and 
represent their hypotheses in an agent-based model (ABM) (1). ABM’s have been used to study 
and model a wide variety of biological systems (2), from general purpose anatomic/cell-for-cell 
representations of organ systems capable of reproducing multiple independent phenomena (3, 4) 
to platforms for drug development (5, 6), and are frequently used to model non-linear dynamical 
systems such as the human immune system (7-10).  
 
ABM’s often have a large number of potentially free parameters, making a comprehensive 
calibration difficult (11-15) and significantly diminishing the utility of traditional parameter 
sensitivity analysis techniques (16, 17).  These difficulties are compounded when considering the 
range of biological heterogeneity seen experimentally and clinically (9).  There are two primary 
factors responsible for biological heterogeneity in experimental data sets: stochasticity and 
genetic variation among individuals.   
 
It is well known in biology that the systemic response to identical perturbations in genetically 
identical individuals (i.e., mice) is governed according to some probability distribution.  This small 
stochastic variability in response can propagate over time such that it ultimately leads to divergent 
phenotypes. As such, ABM’s must incorporate some degree of randomness to simulate these 
behaviors.  However, solely incorporating stochasticity into model rules is insufficient to capture 
the full range of bio-plausible model output – genetic variation among in silico test subjects must 
also be represented.  The in-silico analogue to the human genome is the specific parameterization 
of an ABM’s rule set.  In order to represent a biological population, there must exist a range on 
each parameter within the rule-set parameterization. 
 
In order to demonstrate this, we utilize a previously developed an ABM of systemic inflammation, 
the Innate Immune Response agent-based model (IIRABM).  The IIRABM is a two-dimensional 
abstract representation of the human endothelial-blood interface.  This abstraction is designed to 
model the endothelial-blood interface for a traumatic (in the medical sense) injury and does so by 
representing this interface as the unwrapped internal vascular surface of a 2D projection of the 
terminus for a branch of the arterial vascular network.  The closed circulatory surface can be 
represented as a torus, and this two-dimensional area makes up the space that is simulated by 
the model.  The spatial scale is not directly mapped using this scheme. This abstraction serves 
two primary purposes: to allow circumferential access to the traumatic injury by the innate immune 
system, and to incorporate multiple levels of interaction between leukocytes and tissue. The 
IIRABM utilizes this abstraction to simulate the human inflammatory signaling network response 
to injury; the model has been calibrated such that it reproduces the general clinical trajectories of 
sepsis.  The IIRABM operates by simulating multiple cell types and their interactions, including 
endothelial cells, macrophages, neutrophils, TH0, TH1, and TH2 cells as well as their associated 
precursor cells.  The simulated system dies when total damage (defined as aggregate endothelial 
cell damage) exceeds 80%; this threshold represents the ability of current medical technologies 
to keep patients alive (i.e., through organ support machines) in conditions that previously would 
have been lethal.  The IIRABM is initiated using 5 parameters representing the size and nature of 



the injury/infection as well as a metric of the host’s resilience– initial injury size, microbial 
invasiveness, microbial toxigenesis, environmental toxicity, and host resilience.   
 
The IIRABM characterizes the human innate immune response through measurement of various 
biomarkers, including the pro-inflammatory and anti-inflammatory cytokines included in the 
IIRABM (18).  At each time step, the IIRABM measures the total amount of cytokine present for 
all mediators in the model across the entire simulation.  The ordered set of these cytokine 
measurement creates a high-dimensional trajectory through cytokine space that lasts throughout 
the duration of the simulation (until the in silico patient heals completely or dies.   Prior analysis 
of these trajectories has shown that the aggregate output of the IIRABM behaves as a Random 
Dynamical System (RDS) with chaotic features (9) (in the sense that future simulation state can 
be sensitive to initial conditions). Simply put, an RDS is a system in which the equations of motion 
(in this case, the equations which give the aggregate cytokine value for the system at a specific 
instance in time) contain elements of randomness.  A detailed discussion of this, and more formal 
definition, can be found in (19). 
 
While the IIRABM successfully simulates the human immune response to injury at a high level 
(outcome proportions, time to outcome, etc.), it cannot always replicate specific cytokine time 
series with a sufficient degree of accuracy.  In this work, we use Genetic Algorithms (GA) to 
operate on the IIRABM’s rule set such that it can accurately simulate the cytokine time course 
and final outcomes for a serious burn injury.  Cytokine time series were extracted via inspection 
from (20).  In (20), Bergquist, et al, provide a variety of blood cytokine levels over 15 time points 
and 22 days for patients which exhibited severe burns over 50% of the surface area of their 
bodies.  The authors observed a mortality rate of 50% for this category of injury. 
 
 
Methods 
A GA (21-23) is a population-based optimization algorithm that is inspired by biological evolution.  
In a GA, a candidate solution is represented by a synthetic ‘genome,’ which, for an individual, is 
typically a one-dimensional vector containing numerical values.  Each individual in a genetic 
algorithm can undergo computational analogues to the biological processes of reproduction, 
mutation, and natural selection.  In order to reproduce, two individual vectors are combined in a 
crossover operation, which combines the genetic information from two parents into their progeny.   
 
In our computational models, we define an object, the Model Rule Matrix (MRM) which contains 
comprehensive information regarding the rules that govern the behavior of the computational 
model.  In this scheme, specific rules are represented by rows in the matrix; each computationally 
relevant entity in the model is then represented by the matrix columns.  As a simple example, the 
system of model rule equations for a single cell: 
 

𝐼𝐿10𝑡+1 = 𝐼𝐿10𝑡 + 𝑇𝑁𝐹𝑡 
𝑇𝑁𝐹𝑡+1 = −𝐼𝐿10𝑡 + 𝐼𝐹𝑁𝑔𝑡 

 
Would be represented by the matrix: 
 

[
1 1 0
−1 0 1

] 

 
Where the first column is the IL10 column, the second column is the TNF column, and the third 

column is the IFN- column.  We note that this is a simplified rule for illustration. The matrix is 
readily decomposable into a one-dimensional vector, upon which we can operate using genetic 



algorithms.  The genome vector is then padded with an additional three parameters which govern 
the nature of the injury and how quickly damage spreads though tissue.  This addition describes 
the component of the time evolution of the spatial distribution of a tissue injury that is independent 
of cytokine levels. 
 
The number of rows in the matrix then is equal to the number of rules that it represents, and the 
number of columns is equal to the number of entities that could potentially contribute to the 
decision made by their associated rule.  Using this scheme, cytokines produced by a given cell 
type are held fixed, while the stimuli that lead to the production of that specific cytokine are allowed 
to vary.  This maintains a distinction between the cell and tissue types represented in the model 
throughout the MRM evolution from the GA. 
 
The candidate genomes which comprise the rule set are then tested against a fitness function 
which is simply the sum of cytokine range differences between the experimental data and the 
computational model:  

𝐹 = ∑ |max(𝑐𝑖,𝑡
𝑒 ) − max(𝑐𝑖,𝑡

𝑚) |+𝑘|𝑅𝑒 − 𝑅𝑚|𝑖,𝑡 , 

where 𝑐𝑖,𝑡
𝑒𝑥𝑝

represents the normalized blood serum level of cytokine i at time point t from the 

experimental data,  𝑐𝑖,𝑡
𝑚represents the normalized blood serum level of cytokine i at time point t 

from the IIRABM, 𝑅𝑒 represents the experimentally observed mortality rate, 𝑅𝑚 represents the 
model-generated mortality rate, and k is an adjustable parameter to govern the importance of the 
mortality rate contribution to the fitness function.  For the purposes of this work, we consider an 
optimal solution to be one that minimizes the above fitness function. 
 
Candidate genomes are then selected against each other in a tournament fashion, with a 
tournament size of 2 [28, 29].  The tournament winners make up the breeding pool, and progenitor 
genomes are randomely selected and paired.  We implement a variant of elitism in that, at the 
completion of the tournament, the least fit 10% of the candidate progenitors are replaced with the 
fittest 10% of candidate genomes from the precious generation. Progeny genomes are defined 
with a uniform crossover operation using a standard continuous formulation (24): 

𝐶1,𝑖 = 𝛽𝑃1,𝑖 + (1 − 𝛽)𝑃2,𝑖 
𝐶2,𝑖 = 𝛽𝑃2,𝑖 + (1 − 𝛽)𝑃1,𝑖 

Where 𝐶1,𝑖 is the value for gene i in child 1, 𝑃 is the value for gene i in parent 1, and 𝛽 is a random 

floating-point number between 0 and 1.  After breeding, each child is subject to a random chance 
of mutation which begins at 1% and increases with each generation. 
 
The IIRABM was optimized for 250 generations with a starting population size of 1024 candidate 
parameterizations. The IIRABM was implemented in C++ and the GA was implemented in Python 
3; and simulations were performed on the Cori Cray XC40 Supercomputer at the National Energy 
Research Scientific Computing Center and at the Vermont Advanced Computing Center.  Codes 
can be found at https://bitbcket.org/cockrell/iirabm_fullga/. 
 
Results 
 
A plot of cytokine ranges for 5 cytokines which existed in the clinical data set and were already 
present in the model at the start of this work (GCSF, TNF-α, IL-4, IL-10, and IFN-γ) is shown in 



Figure 1.  Ranges for the original model, described in (9, 10), are shown in black; ranges for the 
published data (20) are shown in red; and ranges for the optimized morel are shown in blue. 

 
 

We note that, while the model is optimized to closely match cytokine time courses for four out of 
the five cytokines used in the fitness function, IL-10 (Fig 1, top-right) does not match at well, with 
peaking occurring at 6 hours post-insult rather than 5 days post-insult, as was seen clinically.  
This discrepancy identifies a weakness in our model when it is being used to simulate burns, 
namely, that the cellular production of IL-10 is not well enough defined, in that its production is 
limited to activated macrophages and TH2 helper cells.  Given that the IIRABM was developed to 
represent the innate immune response to traumatic injury, we consider this recalibration to burn 
injuries to be a success.   
 
We also posit that the nature of 
the IL-10 time series makes a 
poor fit more likely; the IL-10 
time series spikes at t-5 days 
but is near zero everywhere 
else.  A candidate MRM 
parameterization that 
minimizes IL-10 production 
over the entire time course 
would then contribute less to 
the overall fitness (in this case, 
we seek to minimize the fitness 
function) than a hypothetical 
parameterization that was 10% 

Figure 1: Cytokine ranges are shown for 
the original model (black), published data 
(red), and optimized model (blue) for 
GCSF (top-left), IL-10 (top-right), TNF 
(center-left), IL-4 (center-right) and IFNg 
(bottom-left). 

Figure 2: A heatmap of the original rule matrix is shown on the left and the 
optimized matrix is shown on the right.  In these heatmaps, the light green 
represents a 0 or near-0 matrix element; the dark blue represents a negative 
matrix element; the red represents a positive matrix element. 



off on TNF levels for every time step.  
 
In Fig. 2, we compare the original rule matrix to the optimized rule matrix.  Numerical values for 
both matrices can be found in the supplemental material.  The optimized matrix has a much more 
connected structure, and is a dense matrix, as opposed to the sparse original rule matrix.  There 
are not any matrix elements with a value of 0 in the optimized matrix, though there are many 
elements with comparatively small values.  This structure is similar to what is seen in experimental 
bioinformatic studies; all of the cytokines in this network appear to be connected to each other, at 
least to a small degree, while a smaller number of strong connections (which could also be 
considered correlations) provide the majority of the influence on the system dynamics. 
 
Discussion 
 
The IIRABM rule set utilized in this work contained 432 free and continuous parameters, many of 
which had highly nonlinear or conditional effects on the model-generate cytokine trajectories and 
outcomes.  Due to cytokine-specific properties, IL-10 was more challenging than the others when 
performing a multi-cytokine time series optimization.  In future work, we will investigate the effects 
of both updating the cell types present in, and the structure of, the model and altering the fitness 
function.  A simple fitness function alteration would be the addition of a constant multiplier in front 
of the IL-10 terms. 
 
We note that by setting the fitness function to match 
the published data as closely as possible, we have 
neutralized the primary benefit of modeling, the 
minimal cost of adding another patient to the in-silico 
cohort.  The true range of biologically plausible blood 
cytokine concentrations in undoubtedly larger than 
what is seen in a cohort of 20 patients.  In order to 
obtain a more generalizable model, we propose two 
alternatives approaches to the above presented work: 
1) that the fitness function should be configured to 
over-encompass the available data; and 2) that the 
fitness function incorporates the probability density 
function (pdf) which governs the experimental data.  
Incorporating the shape of the probability density 
function into the fitness function can be difficult purely 
as a matter of practicality – often the raw data for 
human cytokine levels isn’t available, and only the 
absolute range can be extracted from published 
manuscripts, and it is also common to see a cohort 
size that is too small to definitively propose a single pdf which adequately describes the data. 
 
The result of GA model refinement and rule discovery is a model parameterization which, when 
instantiated dynamically, generates data that matches what is seen experimentally; in reality, this 
result represents a single step in an iterative cycle of model refinement and biological 
experimentation.  At the conclusion of the GA run, there exists an ensemble of candidate model 
parameterizations which meet the fitness criterion to some fixed threshold.  Many of the genes in 
each individual parameterization end up tightly constrained by the algorithm, while others have a 
larger range.  These latter parameters are those about which the model is most uncertain.  Active 
Learning is a sampling technique used in machine learning in which sampled data is chosen 
based on how much information it can apply to the machine learning model.  A similar approach 

Figure 3: A diagram indicating a hybrid 
experimental/computational workflow for 
the automated calibration and validation 
of ABMs using the MRM scheme. 



can be taken in this case.  In order to most efficiently update and refine the computational model, 
experiments should be designed to query the model features that are most uncertain.  This 
approach is illustrated in Fig. 3. In this way, GA can play an integral role in the iterative cycle of 
model refinement and experimentation necessary to construct a high-fidelity generalizable 
computational model. 
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