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ABSTRACT  

Within the last decade, numerous studies have demonstrated changes in the gut microbiome 

associated with specific autoimmune diseases. Due to differences in study design, data quality 

control, analysis and statistical methods, the results of these studies are inconsistent and 

incomparable. To better understand the relationship between the intestinal microbiome and 

autoimmunity, we have completed a comprehensive re-analysis of 29 studies focusing on the 

gut microbiome in nine autoimmune diseases to identify a specific microbial signature predictive 

of autoimmune disease using both 16S rRNA sequencing data and shotgun metagenomics 

data. Despite the heterogeneity of our data set, our approach has allowed us to build robust 

predictive models for general autoimmunity, as well as models for individual autoimmune 

diseases. Through this, we identified a number of common features predictive of autoimmune 

diseases including deficiency in Alistipes and Lachnobacterium, in addition to 9 inflammatory 

bowel disease, 7 multiple sclerosis and 7 rheumatoid disease predictive taxa consistently 

identified across multiple cohort comparison machine learning models.  Lastly, we assessed 

potential metabolomic alterations based on metagenomic/metabolomic correlation analysis, 

identifying 114 metabolites associated with autoimmunity-predictive taxa.   

 

 

  



INTRODUCTION 

The human intestine is colonized by millions of microbes, which have been shown to be 

involved in metabolism1, immunity2 and host physiology3. This complex ecosystem has been 

extensively studied in the context of disease4,5, diet6–8 and age9 with the goal of determining how 

specific taxa and, more recently the gene expression patterns of these taxa, impact human 

health. The relationship between the microbiome and the immune system has been of particular 

interest and specific bacteria have been shown to affect the function of both innate and adaptive 

immunity10. Further, an increasing number of inflammatory and autoimmune disorders have 

been associated with microbial dysbiosis11, though the precise mechanism for this relationship 

remains unclear.  

Autoimmune diseases are multifactorial and chronic and the term covers nearly 100 

distinct disorders12. Although there appears to be some genetic component, studies in disease-

discordant twins found that concordance rates are incomplete and therefore environmental 

factors, including the gut microbiome, likely contribute to disease pathogenesis 13,14. Hundreds 

of studies have been carried out to better understand the connection between the microbiome 

and autoimmunity in these diseases including studies specifically focused on inflammatory 

bowel disease (IBD), multiple sclerosis (MS), rheumatoid arthritis (RA), type 1 diabetes (T1D), 

and systemic lupus erythematosus (SLE). Despite the extensive study of the human gut 

microbiome in autoimmune disease, published results are inconsistent, which can be attributed 

to the differences in origin of samples (e.g. fecal or mucosal), sequencing platforms, sample 

sizes, therapies administered, patients’ age, geographical location, and methods of data 

analysis. Thus, the question of whether there are common microbial features characterizing 

general autoimmunity still remains.  

Therefore, to better understand the role of specific taxa in autoimmunity, we have 

reprocessed and reanalyzed 29 16S and metagenomic studies focused on the gut microbiome 

and autoimmunity. To do this, we have taken advantage of several machine learning 



approaches to provide an alternative to the traditional diversity analysis15–17. These methods 

give an advantage of learning functional relationships from the data without a need to define 

them beforehand. Moreover, many machine learning methods can handle sparse data with a 

large number of features, ranking them based on importance in their ability to distinguish 

between health and disease states18. These algorithms were used to identify microbial features 

predictive of general autoimmunity, as well as individual autoimmune diseases through the 

reanalysis of publicly available data on human gut microbiome in autoimmune diseases from the 

previous 8 years.  

 

RESULTS 

Autoimmunity-associated changes in microbial composition 

We used a standardized meta-analysis approach to collect, reprocess and integrate 

available metagenomics data from case-control autoimmunity studies focusing on changes in 

the gut microbiome from human fecal samples. Using an expansive literature search we 

identified a total of 64 total autoimmunity studies fulfilling our criteria. Following filtering based 

on unique data, age (2 years or older), metadata and raw file availability and sequencing depth 

we were able to successfully download raw (FASTQ)16S rRNA and/or shotgun metagenomics 

data from 29 studies, 22 with 16S rRNA sequencing data19–40 and 5 studies with shotgun 

metagenomics data41–45, and 2 studies with both46,47 (Supplemental Table 1, Supplementary 

Fig. 1). These included studies on Inflammatory Bowel Disease (IBD, N=12), Multiple Sclerosis 

(MS, N=3), Rheumatoid Arthritis (RA, N=2), Juvenile Idiopathic Arthritis (JIA, N=3), Systemic 

Lupus Erythematosus (SLE, N=2), Type 1 Diabetes (N=2), Reactive Arthritis/Spondiloarthritis 

(ReA, N=1), Behcet’s Syndrome (BS, N=1), and Ankylosing Spondylitis (AS, N=1). An additional 

2 studies with healthy subjects were included to balance the disease and non-diseased cohorts 

(Supplemental Table 1).  



Initially, 16S rRNA data was reprocessed using a standard analysis pipeline, which 

included filtering and taxonomic assignment. Each study was reprocessed individually and final 

taxonomic abundance tables were then concatenated to a build a final autoimmunity matrix. 

Disease specific datasets were also created through combining reprocessed data tables for 

each individual disease type. Each table was then used to build predictive models of general 

autoimmunity as well as disease-specific models (Fig. 1) with the primary goal of identifying the 

most important features (taxa) involved in autoimmunity across and within disease types. 

Metagenomics data was also reprocessed using a separate analysis pipeline, providing 

taxonomic abundance tables (Supplementary Fig. 2).  

Following quality control (QC) and filtering, 20 16S rRNA studies remained for 

downstream analysis (Fig. 1)19,20,22–24,26–28,30,31,33–40,46,47. Notably, 8 out of the 20 studies used 

investigated the role of the human gut microbiome in IBD, due in part to its relatively high 

prevalence in 1.3% of US adults48. However, we were also able to acquire data from studies of 

more rare autoimmune diseases including Behçet’s Syndrome, which results from inflammation 

of the blood vessels19, and Reactive Arthritis. A portion of the studies contained significantly 

more disease samples than the healthy samples, with Halfvarson et al. and Pascal et al., having 

10 times more samples from individuals with an autoimmune disease than from healthy 

controls. For this reason we included healthy samples from two additional studies which 

investigated non-autoimmune diseases49,50 , which after QC and preprocessing resulted in 107 

additional samples. 

While combining of these diverse datasets there were several study-specific 

characteristics known to impact microbial identification that we paid specific attention to, such as 

geography, age, sequencing platform and 16S rRNA primers. A majority of the studies were 

based on populations from North America and Europe, however Manasson et al. investigated 

the gut microbiome of spondyloarthritis in Guatemalan patients33. Further, there was a large 

range in age across studies, with participants being from 2 to 76 years old. Studies focusing on 



newborn children (less than 2 years of age) were removed since it has been well established 

that the microbial diversity in the first few years of life is significantly lower when compared with 

adults51. DNA was sequenced with one of three sequencing platforms, 454 pyrosequencing, Ion 

Torrent, or Illumina instruments with both paired and single reads techniques. Description of the 

characteristics for each study can be found in Supplementary Table 1 and Fig. 2. To assess 

potential batch effects, we employed a Principal Coordinate Analysis (PCoA)52 based on the 

Bray-Curtis distance53 and investigated non-disease based differences. No significant 

differences were observed based on autoimmune disease diagnosis, however, there were a 

subset of non-disease characteristics that were identified as significant based on study, subject 

characteristics, or sequence methods (Supplementary Fig. 3). To combat this, we completed 

study-based analysis to identify study-specific vs. disease-specific features as part of our 

downstream analysis (Supplementary Fig. 6).   

We first examined the taxonomic composition on the genus level of the healthy and 

diseased samples in each study to verify expected changes based on previously published 

results. We were able to recapitulate major findings from all studies. For example, we identified 

disease-specific alterations in multiple studies in Akkermansia39,31, Bacteroides20,35, Blautia36,33, 

Clostridiaceae27, Faecalibacterium28,34, Lachnospira24,28,40, Parabacteroides46, Prevotella40,33,37, 

Ruminococcacaea24,40,39,33,20 and Streptococcus34 (Fig. 2). Interestingly, these previously 

published results, and our reanalyzed results, varied in the directionality of the change for many 

of these taxa, with disease specific overabundance occurring in a subset of studies and a 

reduction in other. These inconsistencies further highlight the need for standardized reanalysis 

and integration of these valuable datasets to better understand the potential impact of microbial 

changes in autoimmune disease.  

The taxonomic composition of healthy individuals showed clear differences, which can 

be attributed to several factors. First, it is well established that microbial composition differs by 

age and geography54. Secondly, it is not guaranteed that the “healthy” recruits included in these 



studies did not suffer from another pathology impacting the gut microbiome. In most studies, 

researchers only ensured that healthy controls had not been diagnosed with autoimmune 

disease of interest and had not taken antibiotics 6 months prior to the sample collection. Thirdly, 

as these studies were sequenced on different platforms and with differing 16S rRNA 

hypervariable regions during PCR amplification, we expect a level of variability in the identified 

taxa even across controls.55.  

 

Predictive Modeling of Autoimmunity 

In order to identify which taxa are most important for distinguishing between healthy 

controls and subjects with autoimmune disease we employed four independent machine 

learning disease models: (1) general autoimmunity; which included samples from all the 

autoimmune diseases identified; (2) IBD specific; (3) MS specific; and (4) Rheumatic Diseases 

(RD) specific, which included samples from all four rheumatic diseases present in our data set, 

RA, ReA, JIA, and SLE (Fig. 1). Genus level taxonomic abundances were used for the final 

predictive modeling analyses. Three independent algorithms were used to capitalize on the 

strengths and limitations of each: Random Forest (RF)56, Least Absolute Shrinkage and 

Selection Operator (LASSO)57, and Support Vector Machine58 with Recursive Feature 

Elimination59 (SVM RFE). Application of three completely independent algorithms capable of 

feature ranking the same data provided an advantage in robustly identifying the most important 

features predictive of autoimmunity by multiple models, providing an additional level of 

confidence. 

Model performance was evaluated using both Area Under the receiver operating 

characteristics Curve (AUC) and macro F1 score, which reports on the reciprocation between 

the specificity and sensitivity. Notably, we incorporated near-zero variance feature removal to 

reduce both computational load and to consider only features with reasonable variation between 

the samples, as those with little variation likely would not impact disease state. Among the three 



algorithms for the autoimmunity model, the best performance was achieved by Random Forest 

with an AUC of 0.829. The superior performance by this algorithm was not unexpected, as 

Random Forest has been previously shown to perform well on the microbial data15. Disease-

specific IBD and MS models reached the AUCs of 0.919 and 0.924, respectively (Fig. 3). 

Interestingly, SVM produced the best AUC of 0.902 for the rheumatic diseases’ prediction. 

Overall, the most stable AUC across the three algorithms was reached on the IBD data set, 

likely due to the considerably higher number of IBD samples compared with other autoimmune 

diseases. Notably, we were able to predict autoimmunity based on only microbial composition of 

the samples, which suggests that there is a common gut microbiome signature present relevant 

to all autoimmune diseases. In order to determine whether our AUCs could be predicted by 

chance, we assigned the labels to the samples at random, and computed our models again. 

The models trained with the random label assignment produced the AUCs of ~0.5 

(Supplemental Fig. 5), which is indicative of a true difference between the healthy controls and 

autoimmune disease subjects based on the gut microbial composition.  

 

Most Predictive Model Features 

Since all three of our models employed feature ranking we were able to identify which 

features were most important for predicting general autoimmunity as well as distinct 

autoimmune diseases. From this, we identified features that were ranked similarly by all three 

algorithms. The top 30 features were selected from ranked taxa of interest from each model: 61 

for general autoimmunity (Fig. 4a), 67 for IBD (Fig. 4b), 92 for MS (Supplementary Fig. 6a) 

and 70 for RD (Supplementary Fig. 6b). In order to account for potential batch affects 

occurring due to study population differences (Supplementary Fig. 3), we created “mock” 

models to predict the study a sample came from, regardless of disease status. This allowed us 

to identify taxa that were able to specifically identify a study population rather than the disease. 

These models identified Blautia, Lachnospiraceae, Lachnospiraceae Ruminococcus, and 



Faecalibacterium as consistently able to predict study regardless of disease or healthy status 

(Supplementary Fig. 7). This allowed us to identify taxa that are likely tied to the study 

population, sequencing platform or experimental method, rather than human health.   

The most predictive features for our comprehensive autoimmunity analysis identified 

Alistipes, Gemmiger, Clostridales, Veilonella, and Enterobactericaea as the most important 

features, all showing reduced abundance in autoimmune disease samples for all except 

Veilonella which was increased compared with healthy controls (Fig. 4a).  Bacteroidales, 

Dialister, Barnesiella, Veilonella and Enterobacteriaceae were consistently identified as most 

important in our IBD model, due to increased Dialister, Barnesiella and Enterobacteriaceae and 

reduced Dialister and Veilonella in diseased compared with healthy controls (Fig. 4b). MS 

predictive features included Lachnospiraceae, Coriobcteriaceae, Methanobrevibacter and 

Butyricicoccus (Supplemental Fig. 6a). Lastly, the RD model identified Erysipelotrichaceae, 

Alistipes, Facalibacterium and Odoribacter and most predictive of disease state (Supplemental 

Fig. 6b). Lachnospiraceae and Facalibacterium were identified in the MS and RD models, 

respectively, but as these were identified as non-specific to disease status (Supplementary 

Fig. 7) we did not consider them as disease-specific taxa.  

Models comparing our three disease types (IBD, MS and RD) to each other were also 

created to further refine our disease specific predictive taxa from our heterogeneous dataset. To 

do this, we compared each disease to each other, identifying a new set of predictive taxa, and 

overlapped these with those identified in the original model created based on healthy controls. 

The model performance (AUC, F1 score) and overlap of the thirty most predictive taxa from 

each model is shown in Figure 5. This analysis provided us with a list of taxa able to distinguish 

each disease not only from healthy controls, but from other autoimmune diseases. In IBD, nine 

features were identified in all three comparisons, including Veilonella, Subdoligranulum, 

Ruminococcaceae and Gemmiger (Fig. 5c). Akkermansia, Bifidobacterium and Streptophyta 

were three of the seven taxa consistently predicted in our MS models (Fig. 5d) and 



Barnesiellaceae, Enterobacteriaceae, Odoribacter and Erysipelotrichaceae were three of the 

seven identified in all RD models (Fig. 5e).  

To validate these findings, we also applied the same machine learning approach to 

shotgun metagenomics data from 7 studies41–47 (Supplemental Fig. 2). Due to data availability, 

we were only able to build models for general autoimmunity and IBD. Twelve of the top 30 

features most predictive features overlapped in both the 16S autoimmunity model (Fig. 4a) and 

metagenomics autoimmunity model (Supplementary Fig. 6c), including Alistipes, Veilonella, 

Bacteroidales, and Akkermansia. Similarly, both 16S (Fig 4b). and metagenomics 

(Supplementary Fig. 6d) IBD models had 11 overlapping top features including Bacteroidales, 

Alistipes, Parabacteroides, and Enterobacteriaceae.  

 

Correlations between highly ranked taxa and metabolism in IBD 

To better understand the potential downstream effects of altered abundance levels of 

these taxa, we used the Inflammatory Bowel Disease Multiomics Database Metabolomic 

Dataset (IMDMDB) to identify metabolites which are significantly correlated with our taxa of 

interest. For this purpose, we chose features that overlapped in at least two of the three disease 

vs disease models that were identified on the genus level (25 taxa total, Fig. 5c-e) and which 

were present in the IBDMDB shotgun metagenomics dataset. This resulted in a total of 10 

genera in common between our dataset and IBDMDB cohort (Fig. 6, Supplementary Fig. 8). 

Investigating correlations between the abundance of these 10 genera with metabolites within 

the IBDMDB, we identified 114 metabolites that significantly correlated with at least one taxa at 

an adjusted p-value < 0.05. Nineteen of the 114 were identified as being correlated with two 

taxa, including bile acid metabolites glycoholate and taurine, unsaturated fatty acids linoleate 

and oleate and branched chain amino acids alloleucine and leucine.  

Two of the 10 genera assessed, Odoribacter and Barnesiella, were both found to be 

reduced in IBD (Fig. 5c). Odoribacter abundance was associated with increased levels in three 



short and medium chain acylcarnitines and in panothenate (Fig. 6f). This is consistent with a 

recent study showing a depletion of panothenate (vitamin B5) in the gut of IBD subjects60 as we 

would expect to see reduced levels of vitamin B5 with reduced Odoribacter levels. However, two 

pf the acylcarnitines identified as being positively associated with Odoribacter, C10 carintine 

and C12:1 carintine, were both found to be significantly increased in subjects with dysbiotic 

Crohns Disease60. As Odoribacter was found to be reduced in our IBD population, this is a 

contradictory finding but may be due to the variability and unknown levels of dysbiosis in our 

population. Barnesiella was found to be negatively associated with seven metabolites involved 

in Beta-Alanine metabolism (Beta-Alanine, L-Glutamic Acid, L-Aspartic acid, Anserine, Uracil, 3-

Methylhistidine, N-carbamoyl-beta-alanine, FDR enrichment < 0.05, Fig. 6g). Further, 

Barnesiella had a negative correlation with a number of additional amino acids, including a 

number known to be preferred by gut bacteria including leucine, isoleucine, lysine and valine61,62 

and a number of polyamines (diacetylspermine, spermidine, N−Acetylputrescine, 

N1−Acetylspermidine, N1−Acetylspermine), which are known to play an integral role in immunity 

regulation63.  

Three genera included in the IMDMDB, Akkermansia, Methanobrevibacter and 

Lactococcus, were found to be predictive of MS. Akkermansia had increased abundance in MS 

samples (Fig. 5d) and showed negative associations with the bile acid component taurocholate, 

bile acid glycocholate and fatty acid anions 3−hydroxyoctanoate and caproate (Fig. 6a).  

Methanobrevibacter and Lactococcus were also identified as being increased in MS (Fig. 5d) 

and showed highly positive correlations with the anti-inflammatory metabolite 1-

methylnicotinamide (Fig. 6e) and nicotinuric acid (Fig. 6i) respectively. Interestingly, nicotinuric 

acid has recently been identified as being exclusively found in the stool of patients with IBD60 

but to our knowledge has not been previous reported in association with any other autoimmune 

disorder. The final two genera investigated, Paraprevotella and Eggerthella, were both found to 

be increased in RD (Fig. 5e). These were negatively associated with bile acids glycolithocholate 



(Fig. 6b) and lithocholate (Fig. 6h), respectively. Paraprevotella was also found to be 

associated with increased unsaturated fatty acids oleate and linolate (Fig. 6b). Further, 

Eggerthella was found to be significantly associated with histamine pathway metabolite N-

acetylhistamine (Fig 6h). One genera, Faecalbacterium, was excluded from the analysis as this 

was one of the five taxa that was consistently able to predict study regardless of disease or 

healthy (Supplementary Fig. 7) 

 

DISCUSSION 

In this analysis, we used data from 29 studies investigating the role of the human gut 

microbiome in autoimmune disease, assessing both general autoimmunity and specific 

diseases. We identified a number of genera that were consistently predictive of diseased vs. 

non-diseased subjects and were able to filter this list based on control models predicting based 

on study only.  Our analysis has recapitulated several recent articles connecting the microbiome 

with autoimmunity and has identified a number of novel taxa that may be related to these 

pathologies. For example, two of the most predictive features from our comprehensive 

autoimmunity analysis were Alistipes and Lachnobacterium, both of which were recently 

identified as being markedly decreased with age in adults greater than 50 years old and, as 

such, potentially associated with host immunity64. We also found a depletion in Clostridiales and 

Ruminococcacaea in IBD compared with controls, consistent with other studies of IBD4 and 

identified Akkermansia as a consistently predictive taxa for MS, an organism which has been 

shown to interact with spore-forming bacteria to worsen the impact of MS-associated 

microbiota65. 

Further, many of the taxa we identified as being predictive of autoimmune disease were 

correlated with metabolites that have been previously found to be associated with autoimmunity 

and inflammation. Recent publications have identified a number of bile acids, triacylglycerols66, 

vitamin B, and acylcarnitine60 metabolites altered in IBD compared with a control population, 



many of which we also found to be significantly associated with our most predictive taxa.  

Histamine, along with taurine and spermine which were also highlighted by our analysis, have 

been found to help shape the host-microbiome relationship through the regulation of the NLRP6 

inflammasome signaling67. Surprisingly, we did not identify many short chain fatty acid (SCFA) 

species, which have been shown to inhibit histone deacetylases (HDACs) and inhibit immune 

response through Treg regulation and as ligands for G-protein coupled receptors with 

downstream anti-inflammatory effects63,68,69. The association identified between metabolites and 

taxa could be either due to the impact of that metabolite on the growth of the taxa, the 

metabolite being a produced by said taxa, or the metabolite negatively associating growth of an 

inhibitory species, and thus must be followed up by a more targeted approach to understand the 

precise biological mechanism.  

Duvallet et al., completed a similar meta-analysis study in 2017 looking across 10 

disease types (arthritis, autism spectrum disorder, Crohn’s disease, Clostridium difficile 

infection, liver cirrhosis, colorectal cancer, enteric diarrheal disease, HIV infection, liver 

diseases, minimal hepatic encephalopathy, non-alcoholic steatohepatitis, obesity, Parkinson’s 

disease, psoriatic arthritis, rheumatoid arthritis, type I diabetes and ulcerative colitis) to identify 

disease-specific and shared taxa4. They too, identified a number of genera associated with 

more than one disease, including Lachnospiraceaea and Ruminococcacaea families and 

several members of the Lactobacillales order and showed the strengths of cross disease 

comparison using publicly available data. Studies delving into specific disease subcategories, 

such as this study focused on autoimmune disease, build upon their original study. Further, our 

reanalysis focused more acutely on investigation of inter-study batch effects and methods of 

reducing the impact of these on downstream analysis.    

We understand there are several limitations of this study. Firstly, the sample size is 

relatively small for machine learning reducing model reliability. As additional data is generated 

on larger cohorts from different ages and different cultural backgrounds we can continue to 



develop and run similar models to further elucidate how gut microbiome promotes autoimmune 

diseases. Additionally, the differences in sequencing platform, geography and subject 

characteristics provides confounders that are difficult to remove from the dataset post hoc. 

Cautious evaluation of taxa identified by our methods in addition to the use of control models 

testing the ability to predict by study rather than disease were used to combat this issue, 

however we are aware that these confounders remain. Future analysis further evaluating how 

each of these study design techniques and participant make-up effects the results of a 

microbiome study would be of great benefit to the community.  

 

METHODS 

Data acquisition 

The PubMed database was searched for publications on 03/01/2018 related to the gut 

microbiome in autoimmune diseases from the last eight years based on the following criteria: 1) 

the study was performed on human fecal samples; 2) the subjects in the studies were older than 

2 years old; 3) the samples were sequenced with either 16S rRNA sequencing or shotgun 

metagenomics or both; 4) the raw data in FASTQ format were publicly available; 5) the provided 

metadata allowed us to distinguish between healthy and control samples, as well as between 

subjects who were explicitly treated in the study and untreated samples. We identified a total of 

29 studies, 22 with 16S rRNA sequencing data, 5 with shotgun metagenomics and 2 studies 

with both types of data available (Supplemental Table 1). In order to balance the number of the 

subjects with autoimmune disease with the number of healthy controls, we added 2 more 16S 

rRNA studies, from which we selected only the healthy controls.  

 

16S rRNA data preprocessing  

We employed QIIME270 (v. 2018.11) to obtain the taxonomic abundances of the samples within 

each study, which were reprocessed independently. Prior to importing the raw data into QIIME2, 



we truncated sequences generated with 454 technology to the maximum length of 300 with Trim 

Galore71 (v 0.5.0) to better resemble Illumina and Ion Torrent technologies output, after which 

the 454 data were imported into QIIME2. The sequences generated with Illumina and Ion 

Torrent were directly imported into QIIME2 with no preprocessing. Following data input, 454-

based data underwent an error correcting step with qiime dada2 denoise-pyro command while 

the rest of the samples were processed with either qiime dada2 denoise-paired or qiime dada2 

denoise-single commands depending on whether the reads were paired or single 

(Supplementary Table 1). During this process the bases with quality less than 20 were 

removed and the paired reads were merged. The resulted sequences abundance tables were 

rarefied to the depth of 5000. This depth was selected based on the alpha diversity curves of 

the studies, in which the plot reached the plateau. Further, we tried to account for 454-specific  

data since the sequencing depth of 454 samples was significantly lower than that of Illumina or 

Ion Torrent. As a result, the samples with sequencing depth less than 5000 were excluded from 

the further analysis (Supplementary Figure 1). In the next step we assigned the taxonomy to 

the sequences by training a Naïve Bayes classifier with qiime feature-classifier fit-classifier-

naive-bayes command based on the Greengenes database72. This was done separately for 

each pair of primers for each 16S rRNA study as different studies sequenced different 

hypervariable regions of the 16S rRNA gene. Following taxonomy assignment, the taxonomic 

abundances tables were collapsed on both genus and species taxonomic levels. Further the 

resulting abundance tables from each study was merged together to create an “autoimmunity” 

data matrix or a disease-specific matrix. For further analysis only the first time point was 

selected from each subject, in cases where there were multiple samples per subject, but the 

time point information was missing, one sample per subject was randomly selected.  

 

Shotgun metagenomics preprocessing  



Sequencing reads were trimmed with Trimmomatic73 (v. 0.36) to have a quality of 20 or greater. 

KneadData74 was used to remove host sequences from reads, which were then supplied to the 

MetaPhlAn275 to obtain relative taxonomic abundance, after which tables from individual studies 

were merged. One exception was the Cekanavicute et al. study, for which only preprocessed 

tables were available, which were processed in the same way. Again, only the first time point of 

each subject was selected, and the studies where it was not possible to determine the very first 

time point, one sample from each subject was selected randomly.  

 

Predictive modeling 

Caret package76 in R was used to build the predictive models and models were built separately 

for each data type. For 16S rRNA we built 4 types of models: autoimmune disease samples vs 

healthy controls, IBD samples vs healthy controls, multiple sclerosis samples vs healthy controls 

and rheumatic diseases (rheumatoid arthritis, spondyloarthritis, reactive arthritis, juvenile 

idiopathic arthritis, systemic lupus erythematosus) vs healthy controls.  In addition, we built 

predictive models comparing IBD and MS, IBD and RD, and MS and RD. Since we identified 

only 7 studies with publicly available shotgun metagenomics data, we computed only 2 

metagenomics models: an autoimmune diseases vs healthy controls model and IBD vs healthy 

control model. Since there were significantly more healthy samples than diseased samples 

when considering the individual disease models, we randomly selected the same number of 

healthy controls samples to match the number of available as diseased samples. The data were 

split into training (90%) and test (10%) sets. The predictive models for each dataset were built 

with three models: Random Forest56, LASSO57 and SVM58 with radial kernel and RFE59 with a 

step of 2. Those models were selected due to their ability to rank the features based on the 

importance for the label prediction. To reduce the computing time before the training step the 

near zero variance features were identified and removed. In order to avoid overfitting, 9-fold-3-

times cross-validation was employed to tune the models during the training step. 



 

Feature Selection 

Each of the selected algorithms ranked features based on importance to their classification. 

Since the three algorithms employ different metrics for the feature ranking, first we sorted the 

features in the ascending order based on importance in each algorithm and then assigned the 

least important feature a value of 1, while the most important feature got the maximum score 

equal to the number of features in a given disease model. For the LASSO results, the features 

with the weight of zero were assigned zero importance. For SVM RFE the mean weights were 

reported since it was run 3 times with 9 folds. In the next step features were sorted in the 

descending order according to the summed rankings produced by all three algorithms, with the 

most important features being assigned the highest rank. Then we selected the top 30 most 

important features for each disease model. 

 

Metabolomic analysis 

We selected taxa that overlapped between at least one disease vs disease models, were 

identified on the genus level, and were present in the shotgun metagenomics dataset from The 

Inflammatory Bowel Disease Multiomics Database (IBDMDB)41. This method provided 10 

different genera. In the next step we correlated the abundance of 10 obtained genera in the 

IBDMDB with the metabolomics table from IBDMDB by using pairwise Spearman correlation 

with Benjamini-Hochberg correction for multiple comparisons and selected metabolites based 

on correlations with an adjusted p-value cutoff of 0.05. MetaboAnalyst was used for Metabolite 

Set Enrichment Analysis77 . 

 

Statistical analysis 



Mann-Whitney-Wilcoxon test with Benjamini-Hochberg correction for multiple comparisons was 

utilized for obtaining p values to detect statistical differences in the Principal Coordinate 

Analysis (PCoA).  
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FIGURE LEGENDS:  

Figure 1: Autoimmunity Analysis Workflow. Twenty-nine 16S rRNA sequenced datasets 

from studies focused on 8 different autoimmune diseases and two datasets representing healthy 

(non-autoimmune disease) cohorts were reprocessed using QIIME270 with data2 denoising and 

rarified to 5000 sequence depth. The output species and genus level relative abundance 

matrices were used to create four machine learning models for (1) general autoimmunity; (2) 

Inflammatory Bowel Disease (IBD); (3) Multiple Schlerosis (MS); and (4) Rheumatic diseases 

including Rheumetoid Arthritis (FA), Reactive Arthritis Spondiloarthritis (RAS), Juvenile 

Idiopathic Arthritis (JIA) and Systemic Lupus Erythematosus (SLE). Top ranked features from 

these models were identified and metabolic changes associated with these taxa of interest were 

assessed using the IBDMDB dataset41.  

Figure 2. Study overview. Overview of (a) 16S rRNA sequencing and (b) shotgun 

metagenomics studies included in our analysis. Includes the number of healthy and disease 

samples in each, geographic location, age group and disease studied. Also includes the 



average relative abundance of taxa at the genus level for the healthy and diseased subjects 

following re-processing. Spondyloarthritis/Ankylosing Spondylitis (S/AS) 

Figure 3. Predictive Modeling of Autoimmune Disease. Area under the curve (AUC) (a,c) 

and F1-scores (b,d) for models predicting any autoimmune disease, irritable bowel disease 

(IBD), multiple sclerosis (MS) and rheumatoid diseases (RD) for three different machine 

learning models, random forest, support vector machine (SVM) with recursive feature 

elimination and least absolute shrinkage and selection operator (LASSO) at the genus, species 

and strain (for metagenomics only) level.  

Figure 4. Taxa Predictive of Disease Top 30 taxa across three predictive models, LASSO, 

random forest (RF) and support vector machines (SVM) for (a) General Autoimmunity and (b) 

Inflammatory Bowel Disease. Features ranked by mean rank across the three models and color 

indicates the rank of each taxa in each model. Log fold change of disease vs. healthy for each 

taxa.  

Figure 5. Disease vs. Disease Comparison Models Model (a) AUCs and (b) F1 scores when 

predicting diseased samples when compared against other disease. Taxa consistently identified 

in multiple comparison models for (c) irritable bowel disease (IBD), (d) multiple sclerosis (MS), 

and (E) rheumatoid diseases (RD). 

Figure 6. Metabolites significantly correlated with disease-predictive taxa. Spearman 

correlation coefficient scores plotted and shaded by adjusted p-value for 9 taxa found to be 

predictive of IBD, MS and RD based on the multiple disease model comparisons.  

Supplementary Figure 1: Study collection and filtering 

Supplementary Figure 2. Metagenomic Analysis Workflow. 

Supplementary Figure 3: PCoA diagrams and statistical differences across 16S datasets 

showing sample similarity by (a) health status, (b) disease type, (c) age, (d) forward primer, (e) 

study, (f) geographic location, (g) sequence platform, and (h) reverse primer.  



Supplementary Figure 4. PCoA diagrams and statistical differences across metagenomics 

datasets showing sample similarity by (a) health status, (b) study, (c) disease type and (d) 

geographic location.  

Supplementary Figure 5. Models trained with random label assignment  

Supplementary Figure 6. Top 30 taxa across three predictive models, LASSO, random forest 

(RF) and support vector machines (SVM) for (a) General Autoimmunity and (b) Inflammatory 

Bowel Disease. Features ranked by mean rank across the three models and color indicates the 

rank of each taxa in each model. Log fold change of disease vs. healthy for each identified taxa 

also shown.  

Supplementary Figure 7. Models and Features Predictive of Study. AUC of random forest 

model prediction of study and taxa features most predictive of study in those models in 16S 

(a,c) and metagenomics (b,d) studies.  

Supplementary Figure 8. (a) Significant correlations between metagenomic abundance of 10 

selected genera and metabolites in IBDMDB dataset. (b) Significant correlation of 

Faecalibacterium abundance, a genus that was predictive of the study, with metabolites from 

IDBMDB. 

 

  



TABLES 

Supplementary Table 1: Study details including demographics, sample number, sequence 

primer, sequence platform.  
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