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Abstract

Background: Evoked potentials (EPs) are a measure of the conductivity of the central nervous system. They
are used to monitor disease progression of multiple sclerosis patients. Previous studies only extracted a few
variables from the EPs, which are often further condensed into a single variable: the EP score. We perform a
machine learning analysis of motor EP that uses the whole time series, instead of a few variables, to predict
disability progression after two years. Obtaining realistic performance estimates of this task has been difficult
because of small data set sizes. We recently extracted a dataset of EPs from the Rehabiliation & MS Center in
Overpelt, Belgium. Our data set is large enough to obtain, for the first time, a performance estimate on an
independent test set containing different patients.
Methods: We extracted a large number of time series features from the motor EPs with the highly
comparative time series analysis software package. Mutual information with the target and the Boruta method
are used to find features which contain information not included in the features studied in the literature. We
use random forests (RF) and logistic regression (LR) classifiers to predict disability progression after two years.
Statistical significance of the performance increase when adding extra features is checked with the DeLong
hypothesis test.
Results: Including extra time series features in motor EPs leads to a statistically significant improvement
compared to using only the known features, although the effect is limited in magnitude (∆AUC = 0.02 for RF
and ∆AUC = 0.05 for LR). RF with extra time series features obtains the best performance (AUC =
0.75± 0.07), which is good considering the limited number of biomarkers in the model. RF (a nonlinear
classifier) outperforms LR (a linear classifier).
Conclusions: Using machine learning methods on EPs shows promising predictive performance. Using
additional EP time series features beyond those already in use leads to a modest increase in performance.
Larger datasets, preferably multi-center, are needed for further research. Given a large enough dataset, these
models may be used to support clinicians in their decision making process regarding future treatment.
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1 Background
Multiple sclerosis (MS) is an inflammatory demyelinating and degenerative chronic
disease of the central nervous system, with symptoms depending on the disease
type and the site of lesions. Ideally, MS should be featured by an individualized
and intense clinical follow-up and treatment strategy. Typical MS symptoms in-
clude sensation deficits and motor, autonomic and neurocognitive dysfunction, but
the clinical course of MS varies greatly between individuals [1]. Establishing the
prognosis for an individual is a major epidemiological goal in MS research. For the
time being however, it remains impossible to accurately predict the disease course
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of an individual patient. This causes anxiety and frustration for patients, families
and health-care professionals [2].

There are numerous measures available to study MS, but there is no gold stan-
dard in monitoring disease activity, measuring progression or evaluating short- and
long term therapy efficacy. Besides magnetic resonance imaging (MRI) scans, which
visualize lesions in the central nervous system, other clinical parameters are used
in the assessment of MS disease progression [3, 4, 5, 6, 7]. The clinically most
commonly used is the expanded disability status scale (EDSS) [8], ranging from 0
to 10 and quantifying the level of disability in MS patients. However, the poten-
tial limitations of EDSS have received increasing attention. Indeed, EDSS depends
on the interpretation of the neurologist, is insufficiently sensitive to detect robust
changes in disability of short time frames, and shows poor responsiveness to disease
progression and treatment effects in secondary progressive (SPMS) and primary
progressive MS (PPMS) [8].

Several research groups have shown that evoked potentials (EP) allow moni-
toring of MS disability, both in cross-sectional studies and longitudinal studies
[9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31],
see [32, 33] for reviews. EP provide quantitative information on the functional
integrity of well-defined pathways of the central nervous system, and reveal early
infra-clinical lesions. They have a predictive value regarding the evolution of disabil-
ity [10, 32, 12, 13, 16, 17, 27, 14, 18, 20, 26, 23]. EP measure the electrical activity
of the brain in response to stimulation of specific nerve pathways or, conversely, the
electrical activity in specific nerve pathways in response to stimulation of the brain.
Different types of EP are available corresponding to different parts of the nervous
system [34]. For visual EP (VEP) the visual system is excited and conductivity is
measured in the optic nerve; for motor EP (MEP) the motor cortex is excited and
conductivity is measured in the feet or hands; for somatosensory EP (SEP) the
somatosensory system (touch) is excited and conductivity is measured in the brain;
and for brainstem auditory EP (BAEP) the auditory system (ears) is excited and
conductivity is measured at the auditory cortex. EP are able to detect the reduction
in electrical conduction caused by damage (demyelination) along these pathways
even when the change is too subtle to be noticed by the person or to translate into
clinical symptoms.

If several types of EP are available for the same patient this is referred to as a
multimodal EP (mmEP). Considerable community effort has been performed to
summarize mmEP by a one-dimensional statistic, called the EP score (EPS), by
applying different scoring methods [13, 14, 17, 18, 30, 22, 31]. The scoring methods
described in literature use a limited amount of features from these EP time series
(EPTS). The latency (time for the signal to arrive) is always included. Besides la-
tency, amplitude and dispersion pattern are also possibly included in the EPS [22].
Latencies and the EPS have been used as a biomarker in clinical and observational
studies [35, 36, 37, 38, 39]. By only using two or three variables extracted from the
EPTS, possibly useful information is lost. In this study, we investigate whether a
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machine learning approach that includes extra features from the EPTS can increase
the predictive performance of EP in MS.

In literature, the main modeling techniques are linear correlation of latency or
EPS with EDSS, and linear or logistic regression models. The performance of these
linear models is most often measured by the explained variance (R2), mean-squared
error (MSE), and area under the curve (AUC) of the receiver-operating character-
istic (ROC). Except for one study with 30 patients [12], no study has used an
independent test set to asses model performance. Some studies use cross-validation
to estimate model performance [16, 18, 19, 26, 21]. Akaike information criterion
(AIC) or Bayesian information criterion (BIC) are sometimes included to encour-
age model parsimony. While such models are statistically rigorous, insightful, and
often used in practice [40], a realistic performance estimate is obtained by training
on a large dataset (part of which is used as a validation set to tweak any hyperpa-
rameters), and testing on an independent large dataset containing different patients.
This study provides, for the first time, such a performance estimate.

Because of its unpredictable disease course, most clinical interest lies in predicting
disease progression. This is often translated to a binary problem, where a certain
increase in EDSS is considered as a deteriorated patient. In the literature, AUC
values for this task range from 0.74 to 0.89, with prediction windows between 6
months and 20 years [19, 26, 22, 23, 25].

We recently extracted a large number of EPTS from the Rehabiliation & MS Center
in Overpelt, Belgium. This patient cohort consists of individuals undergoing treat-
ment. Despite the fact that this adds another unknown to the problem, due to the
incomplete nature of the treatment records, it is, clinically speaking, the most rele-
vant scenario. In a clinical setting, the majority of patients will have had some form
of treatment prior to these types of measurements. The resulting dataset, containing
the full time series of mmEP with longitudinal information for most patients, is the
first of its kind. A description of the dataset and how to access it will be provided
in a separate publication [41]. We perform a disability prediction analysis on the
MEP from this dataset, as this EP modality is most abundant in the dataset. A
machine learning approach is used to see if there is extra information in the MEP
for predicting disability progression after 2 years, besides latency and amplitude.
This prediction of progression can be used to support a clinician’s decision making
process regarding further treatment. 419 patients have at least one measurement
point, where previous studies had between 22 and 221 patients. Including extra
EP features leads to a statistically significant increase in performance in predicting
disability progression, although the absolute effect is small. Our results suggest that
this effect will become more stable on a larger dataset. We show that a nonlinear
model (random forests) achieves significantly better performance compared to a
linear one (logistic regression).
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2 Methods
2.1 Dataset

The full evoked potential dataset consists of 642 patients and has SEP (528), BAEP
(1526), VEP (2482), and MEP (6219) visits [41]. We only study the MEP, because
they are most frequently measured. Each MEP visit contains 4 measurements: two
for the hands (abductor pollicis brevis (APB) muscle), and two for the feet (ab-
ductor hallucis (AH) muscle). Visits that don’t contain all 4 EPTS are discarded.
An example of the EPTS for a single visit is shown in Figure 1. We use the stan-
dard definition of disability progression [42], where the patient has progressed if
EDSST1

− EDSST0
>= 1.0 for EDSST0

≤ 5.5, or if EDSST1
− EDSST0

>= 0.5 for
EDSST0

> 5.5. T0 is the time of the first measurement, and T1 is the time of the
EDSS measurement between 1.5 and 3 years which is closest to the 2 year mark.
The MEP visit has to occur 1 year before or after T0. Visits without two-year
follow-up are discarded.

Measurements of a duration differing from 100ms are discarded. Around 97% of
the data has duration 100ms, so this has little influence on the dataset size, and
keeps the data homogeneous. The majority of EPTS consist of 1920 samples. Due
to a slight difference in machine settings, some EPTS consist of 2000 samples. These
EPTS were downsampled to 1920 samples.

In case no spontaneous response or MEP in rest position is obtainable, a light
voluntary contraction of the muscle in question is asked in order to activate the
motor cortex and increase the possibility of becoming a motor answer. This so
called facilitation method is usually very noisy due to baseline contraction of the
muscle measured, so we decided to drop them from the dataset altogether. Facili-
tated measurements are characterized by a non-flat signal right from the start of the
measurement. We drop any EPTS that have a spectral power above an empirically
determined threshold at the starting segment of the measurement. This segment is
determined by the values of the latency of a healthy patient, which we set to be 17
ms as this is the lower bound for the hands. We use the same threshold for the feet,
which is not a problem since the lower bound there is higher.

For each limb, the EP measurement is repeated multiple times. After discussion
with the neurologists we decided to use only the EPTS with the maximal peak-
to-peak amplitude, as this is likely to be the most informative measurement. The
type of MS was inferred from the diagnosis date and the date of onset, both of
which have missing values, making the type of MS field somewhat unreliable. The
latencies are annotated by the medical staff for a subset of the time series.

After all these steps, we are left with a dataset of 10 008 EPTS from 2502 visits of
419 patients. Note that one patient can have several visits that satisfy the conditions
for two-year follow-up. We have one target (worsened after 2 years or not) for each
visit, so the total number of samples is 2502. Some of the characteristics of the
dataset are summarized in Table 1.
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MS type # patients age (SD) EDSS (SD) F / M ratio # visits % worsening
Unknown 138 44 (12) 3.1 (2.0) 98 / 40 558 13.1

CIS 7 31 (11) 1.3 (0.8) 7 / 0 9 11.1
PPMS 12 57 (11) 4.0 (1.4) 7 / 5 74 12.2
RRMS 223 44 (11) 2.6 (1.5) 164 / 59 1592 9.6
SPMS 45 56 (8) 5.0 (1.5) 31 / 14 269 14.5
All 419 45 (12) 3.0 (1.8) 301 / 118 2502 11.0

Table 1 Characteristics of the dataset. The final column (% worsening) represents the
percentage of visits of patients that have worsened 2 years later. Abbreviations used: MS
multiple sclerosis, SD standard deviation, EDSS expanded disability status scale, F female, M
male, CIS clinically isolated syndrome, PPMS primary progressive MS, RRMS
relapsing-remitting MS, SPMS secondary progressive MS.

2.2 Data analysis pipeline

We start with a simple model that uses a subset of the features proposed in the lit-
erature. As other EPS require neurologist interpretation, and are therefore difficult
to automate, we use latencies as a baseline. The fact that this is a fair baseline is
supported by [22], where it was shown that different EPS have similar predictive
performance, with short-term change or baseline values in (z-scored) latencies be-
ing more predictive than changes in other EPS. It is furthermore supported by the
results from [16], where the central motor conduction time of the MEP was more
informative for disability progression than the MEP EPS.

Despite the increased size of the dataset, the disability progression classification
task remains a challenging problem. Challenging aspects are the limited sensitivity
to change of the EDSS measure, its dependence on neurologist interpretation, and
the heterogeneity of disease development. Therefore, our data analysis pipeline is
mainly focused on minimizing overfitting. As our dataset includes the full EPTS, we
wish to find one or more time series features that provide supplemental information
on disability progression, on top of the features already used in the literature. A
schematic overview of the data analysis pipeline is shown in Figure 2. The various
steps in the data analysis pipeline are detailed below. The data analyis pipeline was
implemented in Python using the scikit-learn library [43], with the exception of the
Boruta processing step, for which we used the Boruta package in R [44], and the
feature extraction, for which we used the highly comparative time-series analysis
(HCTSA) package [45, 46] which is implemented in Matlab.

Feature extraction: Because each EPTS starts with a large peak at the beginning,
an uninformative artifact of the electrophysiological stimulation, the first 70 sam-
ples of each EPTS are discarded. A diverse and large set of time series features is
extracted with the HCTSA package, which automatically calculates around 7700
features from different TS analysis methodologies. The motivation for this approach
is to perform a wide variety of time series analysis types, and draw general con-
clusions on what approaches are useful. It makes the analysis less subjective, since
one does not have to choose a priori the type of extracted features. Given the large
size of this feature set, one expects that almost all useful statistical information
contained in the EPTS is encoded in it. The feature matrix Fij has rows i for each
EPTS and columns j for each feature. If a column fj contains an error or NaN value
it is discarded. Normalization is performed by applying the following transformation
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on each column:

f̂j =

{
1 + exp

[
− fj −median(fj)

1.35× iqr(fj)

]}−1

, (1)

with iqr the interquartile range. Because the median and iqr are used, this nor-
malization is robust to outliers. All normalized columns f̂j that contain an error or
NaN are discarded. To exploit the symmetry between the measurements performed
on the left and the right limb, we sum the features of both sides. This reduces the
number of features we need to consider, which is helpful against overfitting. The
final normalized feature matrices F̂ij of AH and APB both have size 5004 × 5885.

Mutual Information: Our goal is to use a feature selection algorithm in order
to determine the most important features. The ratio of the number of samples
to the number of features is quite small (≈ 1). The feature selection algorithm
we use, Boruta [44], was expected to work well for such a ratio [47]. We however
found it to perform poorly for our problem. The performance of Boruta was tested
by adding the latency, which is known to be relevant, to the list of candidates,
which was subsequently not marked as relevant by Boruta. We therefore reduce the
number of features using mutual information with the target as a measure of feature
importance. We select the top ten percent of features based on this metric.

Hierarchical clustering: In this step we seek to reduce redundancy in our choice
of features. We estimate this redundancy using the correlation distance, which we
define here as

correlation distance =

∣∣∣∣ (u− ū) · (v − v̄)

‖(u− ū)‖2 ‖(v − v̄)‖2

∣∣∣∣ (2)

where u and v are the feature vectors we wish to compare, and ‖·‖2 the Euclidean
distance. Note that we take the absolute value here so highly anti-correlated features
are filtered as well. Features which are highly correlated have a distance close to
zero, and conversely features which are not correlated have a distance close to 1.
We cluster all features at a cutoff of 0.1 and keep only one feature for each cluster.
In practice we found that this step eliminates few to no features.

Boruta: With the number of features now reduced to a more manageable count we
run the Boruta algorithm [44] to estimate the importance of the remaining features.
In a nutshell, the Boruta algorithm compares the importance (as determined by a
Z-scored mean decrease accuracy measure in a random forest) of a given feature
with a set of shuffled versions of that feature (called shadow features). If a feature’s
importance is significantly higher than the maximal importance of its set of shadow
features, it is marked as important. Conversely, any feature with importance sig-
nificantly lower than the maximal importance of its shadow features is marked as
unimportant, and is removed from further iterations. This procedure is repeated
until all features are have an importance assigned to them, or until a maximal
number of iterations is reached. We add a few literature features to the set of TS
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features as well (latencies, EDSS at T0 and age). There are multiple reasons for
doing this. First off, it allows us to check the performance of the Boruta algorithm,
as these features are known to be important. Secondly, some of the TS features may
only be informative in conjunction with a given literature feature. Boruta returns a
numerical measure of feature importance, which allows us to assign an ordering to
the features. On average, some 80 features are confirmed to be relevant. From these
we select the 10 most important ones, based on their importance score. This cutoff
was chosen empirically using cross-validation, as more features leads to overfitting
of the classifier.

Classifier: For the final classification we use a random forest, with 100 decision
trees and balanced class weights. Using more trees led to no improvement in cross-
validation. We opted for a random forest classifier due to the fact that this classifier
is known to be robust against overfitting. We regularize the model further by setting
the minimal number of samples required for a split to be 10% of the total number
of samples. This value was obtained using cross-validation on the training set. The
maximum depth of the resulting decision trees averages around 8. As linear models
are often used in other works, we use logistic regression for comparison.

As discussed earlier, we have 4 time series per visit, 2 of the hands (left and
right), and 2 of the feet (left and right). We run the pipeline for the hands and feet
separately and average the predictions of the resulting classifiers to get the final
prediction. This approach was chosen for two reasons: The time series resulting
from the measurements are quite disparate, therefore the same time series features
may not work well for both. The other reason is that adding too many features to
the model causes the classifier to overfit. Splitting up the task like this reduces the
number of features per model.
We found that the performance of the algorithm is greatly influenced by the choice

of training and test set. To get a measure for how much this factors in we run this
data analysis pipeline 1000 times, each time with a different choice of train/test
split. That way we can get a better understanding of the usefulness of this process,
rather than focusing on a single split. We ensure that patients don’t occur both
in the training and the test set, and that the balance of the targets is roughly the
same for the train and the test set. To illustrate, for some splits we actually obtain
AUC values of 0.97, whereas others are random at 0.5. Of course, these are just
the extreme values, the performance turns out to be normally distributed around
the reported results. At this point, we have the ranking of the 10 most important
features as determined by the Boruta algorithm. For the final prediction, we will add
the top-n features. The value of n is determined on a validation set. For each train-
test split, we use half of the test set as a validation set. This split into validation
and test set satisfies the same conditions as before, and we evaluate the model for
100 such splits. So in total 1000 models are trained (on the training set), and are
subsequently evaluated 100 times each, leading to 100 000 test set performances.
There is a trade-off to be taken into account. On the one hand we want as much

data as possible to fit our model, which would require allocating as much data as
possible to the training set. On the other hand, however, we want to accurately
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RF LR
% train Lit TS sign Lit TS sign

80 0.73± 0.08 0.75± 0.07 12.1% 0.67± 0.10 0.72± 0.08 21.8%
50 0.71± 0.05 0.73± 0.04 18.7% 0.67± 0.06 0.71± 0.05 35.8%
30 0.70± 0.04 0.72± 0.04 24.7% 0.65± 0.05 0.69± 0.04 37.9%
20 0.68± 0.04 0.71± 0.04 30.1% 0.63± 0.06 0.67± 0.05 42.2%

Table 2 Results of the disability progression task The leftmost column indicates what
percentage of the dataset was used for training. Results are shown for the classifier using just
latencies, EDSS at T0 and age (Lit), and for the classifier trained on these features +
additional TS features (TS). RF (Random Forest) and LR (Logistic Regression) indicate the
classifier that was used. The sign column indicates the percentage of splits with a significant
improvement, according to the DeLong test. These results are shown graphically in Figure 3.

measure the performance of said model on an independent test set, which for a
heterogeneous dataset also requires a large amount of data to minimize the variance.
To get an idea of both extremes we evaluate the pipeline at various splits of the
dataset. We run the entire pipeline for 4 different sizes of the training set, composed
of 20, 30, 50 and 80 percent of the dataset.

3 Results
3.1 Disability progression task
Here we present the results of the disability progression prediction task. In the
literature, the main features that are considered are: Latency, EDSS at T0, peak-
to-peak amplitude, age, gender and type of MS. We note that not all of these are
found to be significant in the literature (see, e.g., [25]). Using cross-validation we
determined that using the latencies of the left and right side separately, the EDSS
at T0 and the age worked best for this prediction task. Adding additional literature
features leads to a negligible performance increase. We assess the performance of
the literature features as well as the performance when we add additional time series
features.
The main results are shown in Figure 3. As is to be expected, we see that the

overall performance of the pipeline increases as the size of the training set increases,
while the variance of the result also increases due to the smaller size of the test set.
The general trend we see is that adding the extra time series features improves the
performance on the independent test set, but only marginally. RF performs better
than LR both with and without the additional TS features, with the difference
being especially evident when not adding them. The figure indicates that increasing
the dataset size further would improve the performance.
As a check for our assumption of using only a subset of the literature features,

we also checked the performance when adding additional literature features to the
classifier (peak-to-peak amplitude, gender and type of MS). The resulting model
performed worse than the model using just 4 literature features in almost every
case, and in the cases where it does increase it does so by a negligible margin.
It also degrades the performance gain by adding TS features, presumably due to
overfitting. This reaffirms our decision of using just the latencies, the age and the
EDSS at T0.

3.2 Significance test of performance increase
To check whether the increase in performance by adding TS features is significant,
we employ the DeLong test [48] which tests the hypothesis that the true difference
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in AUC of the model with and without TS features is greater than zero. For each
split we compare the ROC curves of the classifier with and without the additional
TS features. The results are shown in Figure 4. We observe that the percentage of
splits with significantly improved performance increases with the size of the testset,
reaching a maximum at 80% of the dataset used for the testset. We argue that the
low fraction of significant improvement is mainly due to the power of the test. To
support this further we show the significance percentages for a single model (the one
trained on 20% of the dataset), tested on subsets of the remaining 80% of increasing
size. The results are shown in Figure 5, from which we see the fraction of significant
splits increases steadily with the number of samples in the test set.

3.3 Selected features
It is interesting to see which TS features are often found to be important accord-
ing to our feature selection method. As the pipeline is run independently for 1000
times we have 1000 ranked sets of features deemed important by the feature selec-
tion. We consider only the train/test-split where the training set consists of 80%
of the dataset, as the feature selection is most stable in this case. We consider the
anatomies separately as the selected TS features are different for each. Here we give
only a brief overview of the features that we found to be most important. For a
ranked list of the 20 most important features for both APB and AH we refer the
reader to the additional files [see Additional file 1]. There we also provide a way of
obtaining the code used to generate these features.

APB: The feature most often found to be important ranks in the final 10 features
for 83.9% of splits. In 74.7% of splits it ranks in the top 3. The feature in question
is calculated by sliding a window of half the length of the TS across the TS in steps
of 25% of the TS (so a total of 3 windows is considered). For each window, the
mean is calculated. Finally, the standard deviation of these means, divided by the
standard deviation of the entire TS, is calculated. In practice this feature seems to
characterize how fast the TS returns to an average of zero after the initial peak. The
other high-ranking features are mostly other sliding window calculations or features
that compute characteristics of the spectral power of the TS. The prominence of
these features drops off quickly, e.g., the second highest ranking feature occurs in
the top 4 for 39% of splits.

AH: For AH one feature in particular stands out. It is included in the final 10
features for 97.5% of splits. In 90.6% of the splits, it is in the top 3 most important
features. Unfortunately, it is not very interpretable. The feature is calculated by
fitting an autoregressive model to the timeseries, and evaluating its performance
on 25 uniformly selected subsets of the timeseries of 10% the total length of the
time series. The evaluation is based on 1-step ahead prediction. The difference
between the real and predicted value forms a new TS, of length 192 in our case.
The autocorrelation at lag 1 is calculated of each of these 25 TS. Finally, we take
the absolute value of the mean of these 25 autocorrelation values. Further research
could be done to determine why this particular feature is found to be this important.
Other high-ranking features include those that quantify the level of surprise of a
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data point, given its recent memory. The remaining features show no clear pattern of
type. As was the case for APB, we find that these lower ranked features’ prominence
drops off rapidly.
The distributions for the most important features for each anatomy are shown

in Figure 6. These figures were generated using kernel density estimation with a
Gaussian kernel. Despite significant overlap in the distributions for the two classes,
there is a definite difference between the two. For APB the distributions suggest
that patients that are going to worsen have a more rapid return to an average
of zero after the initial peak than patients that will not worsen. For AH such an
intuitive interpretation is difficult due to the oblique nature of its most important
TS feature. The features that were found have a few hyperparameters associated
with them that could be optimized to further boost the performance of the classifier.
We will not be doing this here, as these features were selected by looking at all splits
at once, which covers the complete dataset. Their performance should be evaluated
on another independent test set.

4 Discussion
This paper presents the first analysis on a new dataset, containing the full time
series of several EP types. The idea was to extract a large number of features from
the MEP from different time series analysis methods, and use a machine learning
approach to see which ones are relevant. Improving the prediction of disability
progression compared to using only the latencies, age, and EDSS at T0 was quite
difficult, as the dataset seemed quite noisy, despite its larger size compared with
the literature. On average, one in four TS features that remained after the mutual
information and hierarchical clustering steps was found to contain at least some
information relevant to the prediction task, though only a small subset contained a
strong enough signal to be consistently marked important across multiple train/test
splits. Nevertheless, a significant improvement was found by adding extra features
that showed high importance. The usefulness of non-linear methods is also clearly
demonstrated.
Much more remains to be investigated on this dataset. Given the large amount of

literature on the usefulness of mmEP (as discussed in the introduction), the largest
performance improvement is most likely achieved by including the VEP and SEP.
Given the large differences in measurement times and frequencies of the different
EP modalities, one has to decide between throwing away a lot of data, or using more
elaborate techniques that robustly handle missing data. The second option that has
potential for significant improvement is analyzing the whole longitudinal trajectory
of the patient. This in contrast to our current analysis, where a single visit is used for
predicting progression over 2 years. Inclusion of all (sparsely measured) mmEP and
longitudinal modeling can be combined, and is an active research area [49, 50]. An
obvious extension is to use TS algorithms not included in HCTSA. For example,
another library with qualitatively different TS analysis methods is HIVE-COTE
[51].
We have constricted ourselves to predicting progression over 2 years. This choice

was made because it frequently occurs in the literature, and it leads to many training
samples. Longer or shorter time differences are also of interest. It is, furthermore,
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believed by some clinicians that EPTS pick up disease progression faster than EDSS.
One could check this by using short time-scale EPTS changes (e.g., 6 months) to
predict EDSS changes on longer time-scales [22].
The obvious left-right-symmetry of the limb measurements is taken into account

in a rudimentary way. Incorporating this symmetry in a more advanced way could
boost performance. Data augmentation can be used to expand the size of the train-
ing set, which could stabilize the performance estimate. We note that even small
neural networks are difficult to train on the current dataset. Data augmentation
could make them competitive.
We performed a univariate TS analysis: only the EP with the maximal peak-to-

peak amplitude is selected for feature extraction. Including all EPTS from each visit
could provide extra information. Several algorithms that can handle multivariate TS
are available, see e.g. [52]. However, the number of measured EPTS varies between
visits and between limbs of the same visit. Dealing with this presents a technical
challenge. We remark that our results point to the need for a larger number of
samples if the dimensionality and redundancy of the input space is significantly
increased, which would be the case for a multivariate TS analysis.
While the achieved AUC of 0.75± 0.07 is impressive for a model with only MEP,

EDSS at T0, age, and a few additional TS features, there is surely an upper limit
to what mmEP can predict. Other variables such as, e.g., MRI, cerebrospinal fluid,
and genomic data could boost performance [3]. A very important variable that is
currently not included is the type of medication the patient is on. In the absence
of a single, highly predictive marker, personalization will depend on a combina-
tions of markers. Indeed, several studies show that a multi-parametric approach
may improve our prognostic ability in MS [53, 54]. It involves the development of
predictive models involving the integration of clinical and biological data with an
understanding of the impact of disease on the lives of individual patients [55]. Be-
sides the inclusion of extra biomarkers, another step of great practical importance
is to move towards multicenter design studies. How well mmEP data from different
centers can be combined remains an open and very important question [56, 57].

5 Conclusions
Multiple sclerosis is a chronic disease affecting millions of people worldwide. Gaining
insight into its progression in patients is an important step in the process of gaining
a better understanding of this condition. Evoked potential time series (EPTS) are
one of the tools clinicians use to estimate progression. The prediction of disability
progression from EPTS can be used to support a clinician’s decision making process
regarding further treatment.
We presented a prediction model trained on a dataset containing all available

EP measurements from the Rehabilitation & MS Center in Overpelt, Belgium.
Any patient with two-year follow-up is included. It is an order of magnitude larger
than most datasets used in previous works, and for the first time includes the
raw time series, as opposed to just the high-level features extracted from them
(i.e. latencies, peak-to-peak amplitude, morphology, etc.). The dataset consists of
individuals undergoing treatment, which is clinically the most relevant scenario. We
plan to make this dataset publicly available in the near future.
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We found that adding additional features extracted from the raw time series
improves performance, albeit marginally (∆AUC = 0.02 for the best performing
classifier). Results suggest that the model would benefit from an increased dataset
size. We found that linear models often used in previous works are significantly
outperformed by the random forest classifier, especially when not adding extra TS
features (∆AUC = 0.06). Given the limited number of biomarkers in the model
(EDSS at T0, MEP, and age) and heterogeneity of the cohort, the reported perfor-
mance (AUC 0.75±0.07) is quite good. We took an initial look at the features that
were found to boost predictive power and found a few candidates that might be a
good starting point for further research.

6 List of abbreviations
A list of the abbreviations used throughout this work:
AH Abductor Hallucis
AIC Akaike Information Criterion
APB Abductor Pollicis Brevis
AUC Area Under Curve (of ROC, see below)
BAEP Brainstem Auditory EP (EP see below)
BIC Bayesian Information Criterion
EDSS Expanded Disability Status Scale
EP Evoked Potentials
EPS EP Score
EPTS EP Time Series
FWO Fonds Wetenschappelijk Onderzoek
HCTSA Highly Comparative Time-Series Analysis
LR Logistic Regression
mmEP Multimodal EP
MEP Motor EP
MRI Magnetic Resonance Imaging
MS Multiple Sclerosis
MSE Mean-Squared Error
PPMS Primary Progressive MS
RF Random Forest
ROC Receiver Operating Characteristic
SD Standard Deviation
SEP Somatosensory EP
SPMS Secondary Progressive MS
TS Time Series
VEP Visual EP
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Figure 1 EPTS example Example of the EPTS measured during a single patient visit. The titles
indicate the anatomy (APB for the hands, AH for the feet) and the respective sides (L for left, R
for right).
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Figure 2 Pipeline Schematic overview of the data analysis pipeline
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Figure 3 Results of the disability progression task Results are shown for different sizes of
training set. Each point represents an average over 100 000 test sets, with the error bar indicating
the standard deviation. Results are shown for the baseline model which uses a subset of known
features (Latency, EDSS at T0 and age), as well as a model where we add additional TS features.
Abbreviations used: RF Random Forest, LR Logistic Regression, TS Time series. These results are
represented numerically in Table 2.
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Figure 4 Significance results The results of the DeLong test on the improvement by adding TS
features. We show both the fraction of splits that show an improvement and the fraction of splits
that show significant improvement according to the DeLong test.
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Figure 5 Significance results single model Results of the significance tests, using a single model
(trained on 20% of the dataset), and tested on various sizes of test set. Both the fraction of
improved splits and the fraction of significantly improved splits are shown. The trend suggests
more data would likely increase the fraction of splits that show significant improvement.
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Figure 6 TS feature distributions The distributions of the most important additional TS feature
for APB (left) and AH (right). The dashed lines represent the distributions of the TS feature of
patients that show progression after 2 years, whereas the solid lines are for those that do not
progress. The distributions are normalized separately.
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