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Abstract: Proteomics data encode molecular features of diagnostic value and accurately
reflect key underlying biological mechanisms in cancers. Histopathology imaging is a well-
established clinical approach to cancer diagnosis. The predictive relationship between
large-scale proteomics and H&E-stained histopathology images remains largely
uncharacterized. Here we investigate such associations through the application of machine
learning, including deep neural networks, to proteomics and histology imaging datasets
generated by the Clinical Proteomic Tumor Analysis Consortium (CPTAC) from clear cell
renal cell carcinoma patients. We report robust correlations between a set of diagnostic
proteins and predictions generated by an imaging-based classification model. Proteins
significantly correlated with the histology-based predictions are significantly implicated in
immune responses, extracellular matrix reorganization and metabolism. Moreover, we
showed that the genes encoding these proteins also reliably recapitulate the biological
associations with imaging-derived predictions based on strong gene-protein expression
correlations. Our findings offer novel insights into the integrative modeling of histology and
omics data through machine learning, as well as the methodological basis for new research
opportunities in this and other cancer types.
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1. Introduction

Kidney cancer is one of the most common cancers worldwide accounting yearly for
hundreds of thousands of deaths [1]. Clear cell renal cell carcinomas (CCRCC) is the most
common subtype of kidney cancer representing ~75% of cases [2, 3]. Its diagnosis is
typically incidental, e.g., as part of medical imaging tests unrelated to kidney problems, and
~30 % of patients with CCRCC eventually develop metastases even after removal of the
kidney and other treatments [2]. Therefore, there is a need for developing new approaches
to the understanding and early diagnosis of CCRCC.

Histopathology is a well-established technique for confirming diagnosis and subsequent
sub-classification of kidney and other cancer types [4, 5]. Histopathology consists of the
visual analysis of microscopic slides obtained from tissue samples typically stained with
H&E (hematoxylin and eosin stains). This allows the pathologist to identify cellular patterns
associated with the presence of cancer, its staging and potential clinical outcomes. Even
when performed by well-trained experts, this task is time-consuming and not-always highly
reproducible among pathologists [6, 7]. Moreover, in kidney and other cancers, the use of
histological analysis for diagnostic purposes is often challenging because different cancer
subtypes may share non-specific morphological patterns [2, 8]. Therefore, the accurate and
robust analysis of large amounts of digitized histological slides for cancer diagnosis remains
a key challenge in cancer research and clinical practice.



To address such challenges, different computational techniques have been proposed
for analyzing histology images for diagnostic purposes in multiple cancers [9]. Such
analyses have traditionally relied on the application of classification models, which process
“handcrafted” (explicitly defined) image-derived features such as cell size, shape and pixel
intensity distributions observed in full slides or selected slide patches [8, 9].

With the wider adoption of whole-slide high-content imaging and the increase in the
volume of histology datasets, new opportunities have risen for the application of deep
learning (DL) techniques [10]. Unlike previous generations of machine learning approaches,
DL models based on convolutional neural networks (CNNs) can process raw intensity
images and learn to automatically extract predictive features [11, 12]. The accuracy and
potential clinical relevance of DL models for analyzing histology images for diagnostic and
prognostic purposes have already been shown in different cancer research domains [13-
15]. Thus, DL is expected to play a key role in the era of digital pathology and precision
medicine [6, 16].

The analysis of large amounts of omics data, including transcriptomics and proteomics,
has significantly advanced the molecular characterization of dozens of cancer types and
offers deeper insights into their diagnosis, prognosis and treatment response assessment
[17, 18]. This has been possible in large part because of consortia such as The Cancer
Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC) [18,
19]. For example, The TCGA recently reported a comprehensive analysis of multiple omics
features of renal cancer and their associations with cancer subtypes and patient prognosis
[3]. The study found that CCRCC tumors show elevated immune cell-specific gene
expression in comparison to other kidney cancer sub-types.

The integration of omics and histopathology data has the potential to improve our
understanding of the biological mechanisms underlying tumors, their detection and
treatment [20]. Previous efforts to achieve these goals include the integration of H&E-
stained tissue sections and genomic markers from patients diagnosed with gliomas [21].
CNNs were applied to analyze the images and predict patient survival, and the combination
of such models with genomic biomarkers outperformed the current clinical prognosis
approach [21]. In lung adenocarcinomas (LUAD), histopathology-derived features have
been shown to correlate with omics-based classification, using gene and protein expression,
and to improve patient survival prediction [22]. More recently, using LUAD and liver cancer
datasets, the combination of gene expression and imaging features was also shown to
improve patient prognosis [23]. In both investigations the histology-based prediction models
processed inputs that represented handcrafted image-derived features reflecting specific
cellular and sub-cellular morphological patterns. The application of DL models has also been
demonstrated with TCGA-derived histopathology images and omics data. For instance, a
CNN applied to whole-slide images showed a diagnostic performance comparable to that of
pathologists, and was also capable of predicting the mutation status of commonly mutated
genes in LUAD [24]. In breast cancer and using histopathology images, CNN-based models
assigned patients to diagnostic attributes, e.g., tumor stage, and outperformed models
based on transcriptomic data only [25].

Despite the progress achieved to date, such investigations tend to emphasize the
implementation of histology-based models for improving classification accuracy. Moreover,



the integrated analysis of such models with large-scale proteomics data have received
relatively less attention in comparison to genomics and transcriptomics data. Deeper
investigations of the association of histology imaging models and large-scale proteomics will
not only improve our understanding of the predictive complementarity of such data sources,
but also may offer the basis for more precise diagnostic systems. Here we address these
research needs through the application of machine learning techniques, including DL
models, for proteomics and imaging data. Based on the identification of correlations
between image-based models and proteomics profiles, we generate hypotheses about the
roles of proteins and biological processes in CCRCC, whose molecular activity can be
accurately captured by histopathology imaging. Furthermore, to the best of our knowledge,
we are the first team to systematically investigate the association of histology imaging and
proteomics data in CCRCC using DL.

2. Methods

An overview of our research strategy is summarized in Figure 1A. Here we address the
guestion of finding associations between diagnostic imaging and proteomics data. To
achieve it, we analyzed histology images and proteomics data from hundreds of tumors and
control samples. Machine learning models for distinguishing tumors from normal samples
were built for each dataset independently (Figure 1B). Based on the resulting models, we
investigated correlations between the diagnostic proteins and the image-based predictions.
Using different databases containing annotations of biological processes and pathways, we
detected statistically significant correlations that are relevant to cancer in general, and
CCRCC in particular. Moreover, we investigated associations between mRNA obtained from
the same patient cohort and the histology-based predictions, as well as between mRNA and
their corresponding proteins.
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Figure 1. Overview of research strategy. A. Analytical and predictive modeling workflow
implemented in this study. B. Focus on the implementation of diagnostic models based on
proteomics and histology imaging. C., D. Examples of histology images obtained from tumor
and normal samples respectively.



2.1. Datasets

The proteomics and histology datasets were generated by the CPTAC Clear Cell Renal
Cell Carcinoma (CCRCC) Discovery Study [26]. The proteomics data, consisting of Tandem
Mass Tags-10 (TMT10) experiments of 216 samples, were downloaded from the CPTAC
Data Portal. This dataset included complete information for 9964 proteins measured in 194
samples (84 normal, 110 tumor samples), which are the focus of our investigation. The
histology dataset was obtained from The Cancer Imaging Archive (TCIA), and included a
total of 783 slide images (259 normal, 524 tumor, examples shown in Figures 1C and D).
For some of the patients in this cohort, matching histology slides and proteomic samples
(from the same patient) are available for investigating associations between proteomic- and
image-based diagnostic models (details below). Before implementing diagnostic models,
the proteomics dataset was pre-processed by selecting the LogRatio protein abundant
column, and null values were replaced with zero. Raw histology images were fed into the
DL models, and further processing at the pixel level was carried out during the model training
process, as delineated next.

2.2. Diagnostic models

The proteomics-based diagnostic model was generated with a Random Forest (RF)
classifier with default parameters and ntree = 500. As inputs to this model, we focused on
the top-10% most variable proteins (based on their SD, i.e., 997 proteins) across all available
samples. The RF model was trained, tested and its performance assessed with a 10-fold
cross-validation (10-fold CV) sampling strategy. For both proteomics- and imaging-based
models, we assessed their diagnostic performance using standard quality classification
indicators: accuracy, precision, recall (sensitivity), F1 and AUC values.

The imaging-based diagnostic system consisted of a deep neural network architecture
that combined: a CNN (the VGG16-CNN [27]), a regularized fully connected (FC) neural
network and an output layer (OL). Because of the relatively small number of images
(compared to typical large-scale datasets used in DL) and to reduce the computing times
needed to train and test the models, we used a VGG16-CNN that was previously trained on
more than 14 million generic images corresponding to 1000 image classes. Such a “transfer
learning” is a well-established DL approach to extracting and re-using low-level image
features across imaging application domains [10].

The histology imaging data were partitioned into training (181 normal and 366 tumor
images), validation (52 normal and 105 tumor images) and test datasets (26 normal and 53
tumor images). These datasets were used for model generation, selection and independent
evaluation respectively. To ensure an unbiased and robust analysis, we focused on the
independent test dataset for implementing the proteomics-imaging integrative analysis. All
the images were resized (to 224 x 224 pixels) and were input as 3-channel images to the
DL model. To enable robust model building and reduce the risk of overfitting, images were
randomly flipped and zoomed during training. The pre-trained VGG16-CNN was followed by
a global average pooling layer, a fully connected network (128 units + ReLu activation) and
a dropout layer to further minimize overfitting (rate = 0.2). Image classification was done
with a 2-output (representing disease and control classes) using the softmax activation
function to allow probabilistic classification. The FC and OL layers were optimized on the
histology imaging data using the Adam optimization algorithm (Ir = 0.001, decay = 0.0002),
sparse categorical cross-entropy as loss function, with a maximum of 50 learning epochs
and data batch size = 547.



2.3. Integrative data analysis

Correlations between protein expression and histology-based predictions (P-values
generated by the DL diagnostic system) were calculated with the Pearson correlation
coefficient. Out of the 79 images available in our independent test dataset, only 24 of them
have patient-matched proteomics data. Functional enrichment analyses using GO, KEGG
and Reactome annotations were implemented on the set of predictive proteins. To identify
highly differentially enriched (Reactome) pathways in the proteomics data on the basis of
their correlation with image-based predictions, we performed Gene Set Enrichment Analysis
(GSEA) [28].

We also performed correlative, functional enrichment and GSEA analyses on mRNA
data matched to the independent dataset, i.e., patients with proteomic, imaging and gene
expression data. As the other datasets in this article, the gene expression data were
generated by the CPTAC project (RNASeq) and analyses were applied to their FPKM
expression values [29]. A total of 185 samples were available in the RNASeq dataset with
matching proteomics data (including 110 tumors), and 9884 genes with corresponding
proteins in the proteomics data. Among these data, 22 samples also have matched histology
images.

2.4 Software and statistics

The proteomics-based RF classification model was implemented with the R packages
caret and randomForest. The image-based DL classification model was implemented in
Python using Pandas, NumPy, Matplotlib and Keras libraries. We applied one-sample t-tests
for detecting statistical differences between matched data groups using R. The statistical
significance of functional enrichment analysis and GSEA was estimated with Benjamini-
Hochberg adjusted p-values. Additional data processing and visualization tasks were
completed with R packages: fgsea, Rtsne, ggplot2 and complexHeatmap.

3. Results
3.1. A proteomics-based classification model accurately detects CCRCC

Before implementing the proteomics-based classifier, we investigated the sample
discrimination potential of the top-variable 997 proteins using an unsupervised classification
algorithm. We found that this set of proteins effectively segregates disease and normal
samples into clearly separated clusters (t-SNE mapping, Figure S1). Interestingly, when
using the full set of proteins available in the dataset, we obtained a relatively good
segregation of samples as well: Only 3 normal samples were clustered closer to tumor
samples than to normals (Figure S1). These observations corroborate both the quality and
diagnostic potential of the proteomics dataset, in general, and of our selected set of 997
proteomic markers, in particular.

The proteomics-based RF classification model was capable of distinguishing between
CCRCC and normal samples with an overall accuracy of 0.98 (10-fold CV results), as well
as high sensitivities and specificities (0.97 and 0.99 respectively). This also resulted in high
F1 and AUC values (0.98 and 0.99, 10-fold CV results), which offer further evidence of the
powerful diagnostic capacity of our proteomics-based classification model.
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Figure 2. Proteomic markers are correlated with histology-based predictions. A. Heatmap
of proteomics data (vertical axis: Expression values for 997 proteins) measured in 24
samples in our independent test set (horizontal axis). The top of the heatmap specifies the
true and predicted classes (normal and tumor samples), as well as the corresponding P-
values of assigning a sample to the tumor class, as predicted by our histology-based DL
model. The plot on the left side of the heatmap depicts the correlations between each protein
and the predictions generated by the histology-based DL model (P-values of tumor
classification). B. Plot showing the correlations between each protein expression and the
predictions generated by the histology-based DL model (P-values of assigning an image to
the tumor class). Correlation values are ranked from the highest positive to lowest negative
(anti-correlated) values. C. GO enrichment analysis of proteins highly positively- and anti-
correlated with the histology-based predictions. Bars indicate the magnitude of the
enrichment scores, and adjusted P-values of the enrichments are color coded. Statistically
enriched GO terms were not detected for proteins whose expression values were weakly
correlated with histology-based predictions (i.e., those with correlations around 0).

3.2. A histology-based classification model accurately detects CCRCC

The histology-based prediction (DL) model was trained using the transfer learning and
network adaptation strategy detailed in Methods. The training process was implemented to
learn the parameters of the FC and OL layers of our DL model, while keeping the (transferred
learning) parameters of the CNN frozen. The resulting models consistently reported
classification accuracies between 0.98 and 0.99 (on the training dataset), and between 0.81
and 0.88 when evaluated on a separate validation dataset (Methods). Such classification
performance was observed when training our DL model during 50 epochs. A relative high
classification performance was also obtained on the validation dataset for fewer training
epochs: Accuracies between 0.83 and 0.85 (for 3 and 20 training epochs respectively). To



reduce the risk of model overfitting and decrease the time needed for training and evaluating
models, we selected a DL model trained with 3 learning epochs and the parameters
specified in Methods.

The selected model was then applied to the independent test dataset of histology
images. Our histology-based classification model was capable of distinguishing between
CCRCC and normal samples with an accuracy of 0.95 on the test dataset, as well as with
high sensitivities and specificities (1 and 0.93 respectively). This also resulted in high F1
and AUC values (both equal to 0.92), which further indicates the solid diagnostic capacity
of our model. The model actually only misclassified 4 images out of 79 test images: 4 normal
images predicted as tumors.

3.3. Proteomic markers are correlated with histology-based predictions

The previous section’s findings motivated us to investigate in depth the relationship
between the proteomic markers and the histology-based model predictions. Knowing that
the proteomics data represent a strong source for accurately classifying normal vs. tumor
samples, a key question is how such predictive features relate to the image-based
predictions. To answer this question, first we calculated correlations between each protein
in our test dataset of 24 samples (14 tumors, 10 normal samples) and their corresponding
image-based predictions (P-values of assigning a sample to the tumor class). Also using
hierarchical clustering, we further demonstrated that the protein expression data are
sufficient to accurately separate tumor from normal samples (Figure 2A). Moreover, these
proteins can be grouped in terms of their (expression) correlations with the image-based
predictions (plot shown on left side of heatmap, Figure 2A). In particular, the histology-
derived predictions are strongly associated, either highly positively- or anti-correlated, with
a sub-set of protein markers (Figure 2B).

A closer examination of these relationships showed that the proteins that are either
highly positively- or anti-correlated with histology-based predictions are significantly
enriched in a diversity of biological processes (Figures 2C and S2, GO terms and KEGG
pathways respectively). In the case of proteins that are highly positively correlated with the
image-based predictions, such an enrichment includes processes relevant to cell adhesion,
extracellular organization and immune responses (Figure 2C). Proteins that are strongly
anti-correlated with image predictions are significantly associated with several respiratory
and metabolic processes. Unlike highly positively and anti-correlated proteins, weakly
correlated proteins, i.e., those with correlations around 0 (Figure 2B), are not statistically
associated with specific biological processes.

3.4. Independent verification of biological associations

Using an independent database of annotated molecular pathways (Reactome) and an
alternative enrichment analysis technique (GSEA), we found again that proteins either
strongly positively- or anti-correlated with histology-based predictions are significantly
enriched in a variety of cancer-relevant molecular pathways (Figure 3A). Unlike the analysis
reported above, here we considered the actual levels of the observed correlations between
the proteomic data and the histology-based predictions for detecting significant functional
enrichments.
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Figure 3. Proteins either strongly positively- or anti-correlated with histology-based
predictions are significantly enriched in cancer-relevant molecular pathways. A. List of
Reactome pathways that are significantly associated with the proteins on the basis of their
correlations with histology-based predictions, as detected by GSEA (Methods). Bars
indicate the magnitude of the enrichment scores, and adjusted P-values of the enrichments
are color coded. B. and C. show examples of pathways significantly associated with proteins
highly positively- and anti-correlated with histology-based predictions respectively. In B. and
C. proteins are ranked according to their correlations with the histology-based predictions,
from highest to lowest, and pathway enrichment scores were estimated with GSEA.

We verified that proteins that are positively correlated with the imaging-based
predictions are also statistically associated with molecular pathways relevant to extracellular
organization and immune responses (Figure 3A and 3B). Conversely, we found that proteins
that are anti-correlated with histology-based predictions are significantly associated with
respiratory and metabolic pathways (Figure 3A and 3C). These findings provide additional
supporting evidence of the direct connection between proteomics markers and histology-
based predictions, as well as of their biological meaning in the specific context of CCRCC.

3.5. Genes are highly correlated with proteomic markers and imaging-based predictions

Next, we analyzed the concordance between proteins and their coding RNAs on the
basis of their expression values. This analysis was applied to a set of 22 samples (14 tumor
and 8 normal samples) with matched proteomics, gene expression and imaging data
available. Figure 4 displays a global view of the correlations between these datasets and
the histology-based predictions independently. To facilitate a comparative visualization of
major trends, in each plot the rows show proteins (Figure 4A) and their corresponding genes
(Figure 4B) in full alignment. This analysis first indicates that, as the proteomics data, the
gene expression data are sufficiently informative to perfectly separate tumors from normal
samples (Figure 4). Moreover, as observed in the case of the proteomics data, genes can
also be meaningfully ranked on the basis of their correlations with the histology-based
predictions (see correlation plots on the left side of each heatmap, Figure 4). The latter
includes RNAs highly positively- and anti-correlated with the histology-based predictions
(Figures 4 and S3). Also, as in the case of the proteomics data, such genes are significantly
enriched in biological processes (Figure S3): immune responses and extracellular



organization (for genes highly positively correlated with histology-based predictions), and
metabolic processes (for genes anti-correlated with histology-based predictions).
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Figure 4. Analysis of the correlations between the proteomics data and their encoding
genes, and between each dataset and the histology-based predictions. A. Focus on the
proteomics data. B. Focus on the gene expression data. In each plot, the rows show proteins
(A) and their corresponding coding genes (B) in alignment to facilitate comparative
visualization, i.e., each row in each heatmap refers to a protein and its coding gene. Analysis
performed on 22 samples with matched proteomics, gene expression and imaging data
available.

A deeper analysis of these datasets (995 proteins with their corresponding gene expression
data) showed strong correlations between protein and gene expression (median absolute
Pearson correlation, r = 0.76). This correlation was statistically higher than that observed
when all the proteins available in the dataset (N = 9984 proteins with corresponding gene
expression data) are considered (r = 0.76 vs. 0.47, P < 2.2E-16, Figure 5A). Moreover, we
found that the correlations between protein expression and image-based predictions are
also concordant with the correlations between gene expression and image-based
predictions, in particular for the strongest positive and negative correlations observed in
each correlation setting (Figure 5B).

GSEA of the proteins and genes separately, ranked by their correlations with the image-
based predictions, resulted in 35 statistically enriched molecular pathways that were
detected by both datasets independently (Figure 5C). This shared set of functional
associations included 31 pathways relevant to different immune and extracellular matrix
organization processes with positive enrichment scores, i.e., the correlations of protein (and
gene expression) with image-based predictions are also positively correlated with the
activity of these pathways (Figure 5D). Conversely, there are 4 pathways relevant to different
metabolic processes with negative enrichment scores (Figure 5D). The latter means that
image-based predictions that are not positively correlated with protein and gene expression
are similarly anti-correlated with the activity of these 4 pathways.
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Figure 5. Protein and gene expression data are highly concordant in the diagnosis of
CCRCC. A. Box plot of the gene-protein expression correlations observed in our set of 995
proteins, compared to distribution of correlation values observed in the full set of proteomics
dataset with available gene expression data. B. Correlation plot of protein expression-image
prediction correlations (vertical axis) vs. gene expression-image prediction correlations
(horizontal axis). C. Number of overlapping molecular (Reactome) pathways statistically
detected (with GSEA) in the protein and gene expression datasets independently, on the
basis of their correlations with the image-based predictions. D. List of significantly enriched
35 pathways shared in common by the protein and gene expression datasets. Bars indicate
the magnitude of the enrichment scores, and adjusted P-values of the enrichments are color

coded.

To further assess the relevance of the correlations between protein (and gene)
expression and image-based predictions, we investigated whether only the correlations
between protein and gene expression would be sufficient to detect the above-identified
molecular mechanisms independently of the image-derived prediction information. This
analysis was done by ranking the 995 proteins on the basis of their expression correlations
with their corresponding encoding genes, i.e., from the highest to the lowest protein-gene
expression correlation pairs, followed by GSEA applied to the obtained ranking. This
analysis did not result in any significant pathway enrichments for the set of 995 proteins,
though as expected a variety of pathway enrichments were found when using the full set of
9884 proteins (Figure S4). These results confirm that histology imaging-based predictions



can reliably capture information relevant to immune responses and metabolic processes, as
encoded in both the proteomics and transcriptomics data.

4. Discussion

Our research addressed the problem of integrating histopathology- and proteomics-
based diagnostic models through machine learning approaches. This challenge is important
for systematically determining molecular features that can be accurately captured by
pathology-based diagnostic models. Although our proteomic- and pathology-based models
do not show perfect classification capacity, they are sufficiently accurate for investigating
predictive relationships between them, as well as for establishing commonalities and
complementarities at the functional level.

Using CCRCC as a novel study case, we elucidated the correlation of the diagnostic
proteomics data with the predictions generated by the histology-based diagnostic model.
This analysis demonstrated that, on the basis of their expression, a set of proteins are
strongly correlated with the image-derived predictions. Using multiple annotation datasets
and statistical analyses, we also showed how these correlations are significantly linked to
specific biological processes relevant to the emergence and development of cancer. More
specifically, we showed how our histology-based diagnostic model accurately captures
predictive features in the proteomics dataset that are implicated in immune responses and
extracellular matrix re-organization. These associations are also relevant in light of recent
findings by the TCGA showing that CCRCC tumors are characterized by elevated immune
activity [3]. Conversely, we showed how anti-correlations between proteomics and histology
models are reflective of metabolic processes. Furthermore, we showed that gene
expression data can also very closely recapitulate these biological associations based on
their strong correlation with the proteomics data. These findings are useful not only for
understanding novel ways to integrate these data types for predictive purposes, but also for
generating hypotheses about the mechanisms underlying patient-specific classifications.

Although our study offers novel and relevant insights into the integration of histology and
proteomics data through the application of machine learning, it shows some limitations that
will merit future consideration. First, our study is limited by our focus on a single patient
cohort of CCRCC patients. Additional validations on datasets obtained from independent
cohorts may further demonstrate the clinical relevance of our diagnostic models and their
integrative analysis, and will also enable wider investigations of variations related to different
clinical factors, such as gender and tumor subtypes. Nevertheless, our study provides a
solid basis for further investigations based on the analysis of carefully annotated datasets
obtained from a CPTAC reference cohort. Our study is also limited by the relatively small
amounts of data, in particular those needed for independently validating our models on
matched histology and proteomics data from the same patients. Although the CPTAC
currently offers the largest amount of data combining histology and proteomics data for
CCRCC research, further validations with cohorts of different sizes are needed.

To conclude, our study presented a systematic investigation of the association of
histopathology and proteomics data in a diagnostic setting. The resulting models and
insights are relevant for understanding the predictive interplay between these datasets, as
well as their informational complementarities at the molecular level. Furthermore, the
proposed integrative analysis approach is applicable to other investigations with different
tumors or omic data types.
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Figure S1. Unsupervised exploration of the sample discrimination potential of the CPTAC-
CCRCC proteomics dataset. Both plots show 2D maps of the projected transformations
generated by the t-SNE algorithm. Left plot was obtained when using the full set of proteins
available in the CCRCC dataset (9964 proteins). The right plot was obtained when using the
top 10% most variable proteins in the dataset.
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Figure S2. KEGG pathway enrichments of the proteins that are either highly positively- or

anti-correlated with histology-based predictions.

Bars indicate the magnitude of the

enrichment scores, and adjusted P-values of the enrichments are color coded.
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Figure S3. Analysis of correlations between RNAs (encoding the diagnostic set of proteins)
and the histology-based model predictions. A. Correlation plot of gene expression values
and image-based predictions (P-values of assigning an image to the tumor class). B. GO
enrichment analysis of proteins highly positively-, anti- and not correlated with histology-
based predictions. C. List of Reactome pathways that are significantly associated with the
genes on the basis of their correlations with histology-based predictions, as detected by
GSEA. D. Examples of pathways significantly associated with proteins highly positively- and
anti-correlated with histology-based predictions respectively. In B and C: Bars indicate the
magnitude of the enrichment scores, and adjusted P-values of the enrichments are color
coded.
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Figure S4. Reactome pathways enriched in the full set of 9884 genes available in the
CCRCC (RNASeq) dataset. A. List of statistically detected enrichments identified by GSEA.
B. Example of a significantly enriched molecular pathway. Genes were ranked on the basis
of their expression correlations with their protein expression values, and GSEA estimated
pathway enrichment scores. Using the same analysis, no significant enrichments were

obtained when focusing on the set of 995 diagnostic proteins.



