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Abstract
In this paper we explore computational approaches that enable us to identify genes that have 

become essential in individual cancer cell lines.  Using recently published experimental cancer cell 

line gene essentiality data, human protein-protein interaction (PPI) network data and individual cell-

line genomic alteration data we have built a range of machine learning classification models to 

predict cell line specific acquired essential genes. Genetic alterations found in each individual cell 

line were modelled by removing protein nodes to reflect loss of function mutations and changing 

the weights of edges in each PPI to reflect gain of function mutations and gene expression changes.

We found that PPI networks can be used to successfully classify human cell line specific acquired 

essential genes within individual cell lines and between cell lines, even across tissue types with 

AUC ROC scores of between 0.75 and 0.85.  Our novel perturbed PPI network models further 

improved prediction power compared to the base PPI model and are shown to be more sensitive to 

genes on which the cell becomes dependent as a result of other changes. These improvements offer 

opportunities for personalised therapy with each individual’s cancer cell dependencies presenting a 

potential tailored drug target.

The overriding motivation for predicting cancer cell line specific acquired essential genes is to 

provide a low-cost approach to identifying personalised cancer drug targets without the cost of 

exhaustive loss of function screening.
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Introduction
An essential gene is one which is necessary for cellular survival and reproductive success. 

However, the exact set of essential genes is context specific depending on the cell type, genetic and 

epigenetic aberrations and the cell environment. The different definitions and measurements of 

essentiality often have considerable overlap but there are also large areas of disagreement 

(Eisenberg & Levanon, 2013; Bartha et al, 2018).

During the process of carcinogenesis, the pattern of essential genes changes as cells become 

addicted to oncogenes and tumour suppressor genes become inactivated (Weinstein, 2002; Luo et 

al, 2009). Identifying gene dependencies that result from carcinogenesis can provide opportunities 

for targeted treatments, as the inhibition of proteins which are essential in cancer cells but not in 

normal cells can lead to selective cell death (Workman et al, 2013).  However, the heterozygous 

nature of cancer and the large number of genetic alterations in cancer cell lines prevents the 

exhaustive identification of these acquired essential proteins for all possible cell lines.

Several groups have used features derived from protein-protein interaction (PPI) networks to predict

cancer genes (Li et al, 2009), and genetic interactions (Benstead-Hume et al, 2019).  Furthermore 

there have been a number of successful attempts to predict common essential genes using biological

network data in different contexts and in different organisms (for a review see Zhang et al. (Zhang 

et al, 2016) ). These studies have used a range of different network data including protein-protein 

interaction (PPI) networks, transcriptional regulatory networks, gene co-expression networks, 

metabolic networks (MNs) and networks that integrate two or more of the above.  Due to data 

availability these studies have generally focused on model organisms. For studies on S. cerevisiae 

(Chen & Xu, 2005; Saha & Heber, 2006; Acencio et al, 2009). For studies on E. coli see (da Silva 

et al, 2008; Hwang et al, 2009) and for studies on various bacteria see  (Plaimas et al, 2010; Cheng 
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et al, 2014; Lu et al, 2014). For the most part these studies employ similar methods where topology 

data is extracted from the biological networks. This topology data is subsequently used as a feature 

set to train machine learning models to identify essential genes.  For example, Saha et al. (Saha & 

Heber, 2006) reported a ROC AUC of 82% using PPI network degree count and conservation score 

features to classify ~2,200 essential genes in  S. cerevisiae and  Müller da Silva et al. (da Silva et al,

2008) who reported F1 scores of 83.4% for essential gene predictions and 79.7% for non-essential 

gene prediction in E coli. Similar predictions have not been reported for human cell lines.

Generally past studies have focused on a static version of the known PPI network with little 

modification for individual samples. Observations made by Roumeliotis et al. (Roumeliotis et al, 

2017), that suggest the effect of genetic variations can be transmitted from directly affected proteins

to distant gene products through protein interaction pathways, suggest that the inclusion genetic 

alterations may allow us to improve the traditional PPI network model.

Recently there have been significant experimental efforts to identify and catalogue cancer specific 

acquired essential genes, otherwise known as gene dependencies, experimentally. Amongst these 

efforts are a number of loss of function screens (Ngo et al, 2006) performed using both RNAi and 

CRISPR-Cas9 systems (Marcotte et al, 2016, 2012; Luo et al, 2008; Cheung et al, 2011; Aksoy et 

al, 2014; Aguirre et al, 2016). These screens investigate the changes in phenotype caused in cell 

lines by systematically knocking genes out one by one either through deletion or disruption. Knock-

outs that result in significantly deleterious phenotypes signal that the respective gene may be 

essential in that cell line. 

In response to reported off-target effects observed in loss of function screens, where genes other 

than the target are disrupted by certain RNAi (Jackson & Linsley, 2004; Birmingham et al, 2006; 

Buehler et al, 2012; Munoz et al, 2016; Aguirre et al, 2016), Tsherniak et al. (Tsherniak et al, 2017) 

building on previous work by Cowley et al. (Cowley et al, 2014), performed 285 genome scale 
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systematic loss-of-function screens to identified cancer dependencies across a total of 501 human 

cancer cell lines covering 21 different tissue types. They found 6,476 genes that had a cancer 

dependency score of over 0.65 in at least one cell line. Of these 6,476 genes, 545 were 

dependencies in 20-50% of cell lines in at least one tissue-type. This suggested that these genes are 

commonly essential in cancer cells of that tissue type but non-essential in normal cells.

While identifying general essential genes or disease specific gene dependencies provides a better 

understanding of potential disease specific targets, loss of function screens are not readily available 

for the majority of individual cancer patients. Tools that could predict cell line specific gene 

dependencies from more readily available data such as mutations and gene expression may offer 

new opportunities for affordable tailored therapies (Charlton & Spicer, 2016; Benstead-Hume et al, 

2017).

In this study we use recent cell line specific gene dependency data along with PPI networks data to 

build models able to identify novel cell line specific gene dependencies. To do this we model 

genetic alterations in specific cell lines by perturbing their respective PPI networks. We explore the 

viability of identifying cell line specific gene dependencies both within and between various human 

cancer cell lines using this perturbed PPI networks data. Finally, we introduce DependANT, a 

classifier trained to predict cell line specific gene dependencies using both generic and perturbed 

PPI networks data with the aim of providing a low cost approach to identifying personalised cancer 

drug targets without the cost of exhaustive loss of function screening.
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Results

Data sets

DependANT classifies cell line specific gene dependencies via models built using protein-protein 

interaction (PPI) network and genetic alteration data. The PPI networks were sourced via STRING 

(von Mering et al, 2005)  and the mutation and gene expression data used to perturb our networks, 

as well as the gene dependency scores used to label our training data, are publicly available from 

Tsherniak et al. via project Achilles (Tsherniak et al, 2017). 

We selected all breast, kidney and pancreatic cancer cell lines that had sufficient gene dependency 

and genetic alteration data in the Tsherniak data (figure EV 1). These included 19 breast, 11 kidney 

and 11 pancreatic cell lines. For each cell line we selected all genes with a likelihood score higher 

than 0.65 in the Tsherniak study as a gene upon which its host cell is dependent, a total of 4,030 

gene dependencies across 39 cell lines.

Gene dependency count and magnitude of genomic alteration 
are significantly correlated

We first set out to find out if and how acquired gene dependencies differ across cell lines and tissue 

types and how gene dependency is related to genomic alteration. Using the data sourced via 

Tsherniak et al. we first plotted the number of gene dependencies reported for each cell line against 

a measure of that cell line’s genomic alteration.

We measured each cell line's level of genomic alteration by counting the number of genes that had 

pathogenic mutations as identified by SIFT (Sim et al, 2012) and the number of genes differentially 

expressed when compared to the mean expression level for cell lines of that tissue type, using a cut-

off point of 0.5 TPM.
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Across all cell lines we found a slight but significant positive correlation between the measure of 

genetic alteration and the number of gene dependencies in cell lines (R= 0.36, p=0.012) (figure EV 

2. a.).  To calculate the significance of this level of correlation we shuffled the data for genomic 

alterations 10,000 times, calculating the correlation coefficient each time to provide a normal 

distribution of correlation coefficients (figure EV 2. b.).

This significant positive correlation may be the result of alterations that have affected one or more 

otherwise non-essential genes that are part of synthetic lethal genetic interactions rendering the 

surviving gene in the pair as essential for cell viability.

We found that when compared to the other two tissue types cell lines originating in breast tissues 

exhibited, on average, a higher level of genomic alteration (p=3e-5) and a higher number of 

reported gene dependencies (p=0.024).

Gene dependency signatures are enriched for specific disease 
tissue types

In order to quantify how gene dependencies are distributed across specific tissue types we next 

performed non-negative matrix factorisation (NMF) in order to find common signatures of gene 

dependency. To better understand how these signatures relate across tissue types we added 

additional cell lines from pancreatic tissue samples. To render the data more easily manageable for 

NMF we filtered our gene dependency data to remove genes that showed low variation between 

tissue types, i.e. any genes with var <0.1 across all tissue types were removed from the data before 

factorisation.

We found that 6 signatures was the minimum number required to describe the majority of the data 

(figure 1. a.).  We took the most representational signature for each cell line and called this the cell 

line’s prominent signature. We plotted a count of cell lines with each corresponding prominent 
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signature which was further grouped for tissue type to find enrichment.  We found that two 

signatures contained only one type of tissue type, signature 2 which features only breast and 

signature 5 which features only kidney tissue. Signature 3 was also highly enriched for pancreatic 

tissue (figure 1. b.).

This may suggest that different tissue types feature fairly stable, unique patterns of gene 

dependency either as a result of cellular environment or, especially in the case of cancer cell lines, 

synthetic lethal interactions.

For each signature we generated a list of the most prominently differentiated genes (figure 1. c.) by 

ranking the distance of each gene’s occurrence count in each signature from the from mean number 

of occurrences of that gene across all signatures as reported in table 1.

Modelling cell lines with biological network and genetic 
alteration data

For each selected cell line a model was created from the STRING PPI networks data (von Mering 

et al, 2005). In each model a node represents a protein and each edge between nodes a physical 

interaction between the two respective proteins. Once each model is generated in this way we 

essentially treat each node as the gene associated with the protein (figure 2.).

We then extracted topology data for each node (table 2.) and used these data points as features in 

our machine learning models. The distribution of features values for dependency genes are 

somewhat different to those of non-dependency genes notably for the betweenness, constraint, eigen

centrality and hub_score features (figure EV 3.) suggesting these features should provide some 

predictive power.
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We labelled the nodes in PPI network using the gene dependency data sourced via Tsherniak et al. 

(Tsherniak et al, 2017) for each cell line as either a dependency or non-dependency for training and 

validation.  We refer to this unperturbed labelled PPI model as our base PPI networks model below.

Base PPI network parameter data predicts pan-cell line 
dependency genes

To establish baseline performance for our classification models and to generate a list of relatively 

common dependency genes across cell lines we ran our classifiers on each cell line with no 

alterations or perturbations using the base PPI network discussed above.

We ran these classifiers to validate performance within cell lines, across cell lines of the same tissue

type and across cell lines originating from different tissue types to understand how well the 

classifiers generalise.

To validate classification within individual cell lines we optimised our ADA boost classifiers’ hyper 

parameters using 5-fold cross-validation on our training data and further validated the classification 

performance using hold-out test data which constituted 20% of the full data set.

We validated the model on each of our 42 cell lines separately, using both training data and 

validation data extracted from the same single cell line. Each trial was repeated 10 times using the 

base PPI model. This gave us a mean predictive performance of AUC ROC 0.765 (s.d. 0.024).

To measure performance across cell lines originating from the same tissue type and the predictive 

performance between tissue types we used the training sets that were already generated for each cell

line to train our classifiers and we systematically validated against each other cell lines test set.

To ensure that our models were not being biased by genes that were present in both training and test

sets we ensured that any genes present in the training set were removed from the active test set.
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We first measured how well our models generalise from one cell line to another within the same 

tissue type. Under these conditions the base PPI models had an average AUC ROC of 0.761 (s.d. 

0.005), 0.755 (s.d. 0.008) and 0.754 (s.d. 0.012) for breast, kidney and pancreatic cell line sets 

respectively.

Finally, we trained our model on kidney data before predicting acquired gene dependencies in 

breast and pancreatic tissue. These cross cell line predictions resulted in a mean AUC ROC of 0.758

(s.d. 0.007) and 0.758 (s.d. 0.01) respectively. Similarly when we trained the model on breast data 

before predicting dependency genes in kidney tissue the model had a mean AUC ROC of 0.759 (s.d.

0.006) and breast to pancreas performed similarly with 0.761 (s.d. 0.01) Taking the mean 

performance of all cell lines predicting all other cell lines the base PPI network model gave an AUC

ROC of 0.757 (s.d. 0.007).

Feature importance

To quantify which features provide the most predictive power to our models we calculated a 

normalised importance score for each feature for each cell line and took the distribution of these 

scores across all cell lines.  Feature importance was calculated by measuring the mean decrease in 

accuracy without each feature across all tree permutations in a random forest.

We found that a number of features that measure connectivity of a gene perform better than degree 

centrality although degree centrality does provide a moderate amount of predictive power. Page 

rank and eigen centrality scored well in all cell line models followed by hub score and constraint. 

Eccentricity, the distance a given node is away from the furthest node from itself in the network, a 

measure of how close that node is to the centre of the network, performs badly across all models.

These importance scores reflected the class feature distributions fairly well, i.e. features whose 

values varied more between essential and non-essential genes provided more predictive power. 
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Pagerank and constraint showed a noticeable differentiation between classes while the 

differentiation between classes for eigen centrality and hubscore features were not as prominent 

(figure EV 4.).

Our perturbed models reported improved predictive power 
compared to our base model

Our base PPI models performed moderately well when predicting commonly observed essential 

genes within and across cancer cell lines. In order to improve overall performance and classify less 

common dependency genes that occur in a smaller subset of cell lines we used genetic alteration 

data to create unique models for each cell line.

Based on the available project Achilles mutation and expression data we applied a number of 

treatments to the base PPI networks to encode each cell line’s unique genetic alteration profile as 

discussed below.

Mutations such as frameshift indels or nonsense substitutions were labelled as loss of function. For 

missense mutations the Pathogenic mutations were identified using the SIFT online (Sim et al, 

2012) and then split into either loss of function or gain of function using the MoKCaRF (Baeissa, 

2019) algorithm. Nodes that represented genes with inactivating mutations were removed from the 

PPI network, for those that represented gain of function we amended the weights of their outgoing 

edges as discussed below.

As well as removing inactivated nodes we weighted edges to represent the strength of the signal 

between the two genes - the stronger the signal the lower the barrier. Two unidirectional edges were 

created between each gene pair (g1,g2).
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We calculated each edge weight so that as gene expression (g) tends to 0, weight (w) tends to 1. As 

g tends to infinity, w tends to 0. Specifically

w = 0.5 – 0.5 * ( math.tanh ( math.log ( g+1e-10 ) ) )

For genes subject to a gain of function mutation we multiplied the gene expression by 10 before 

calculating the weight. Whilst the exact equation w is somewhat arbitrary we found that our results 

were robust to changes in w.

We used three distinct versions of our expression data to accomplish these perturbations. We first 

used the raw expression data for each gene directly, next we normalised the expression level of each

gene in a cell line against the same gene in all other cell lines of the same tissue type and finally, we

normalised the data against the same gene in all other cell lines.

We found that of all the PPI networks treatments the raw gene expression data showed the best 

overall predictive performance both within and across cell lines. Within cell lines our raw data 

models scored a mean AUC ROC of 0.812 (s.d. 0.023) compared to the base model’s performance 

of AUC ROC 0.765 (s.d. 0.024).  

Predicting across all cell lines and all rarities of gene our raw data model performed with ROC 

AUC of 0.801 (s.d. 0.006) again an improvement performance to that of the base PPI networks 

model’s mean ROC AUC of 0.758 (s.d. 0.007) (figure 3.) (Table 3.).

Perturbed PPI network models perform well for both common
and rarer gene dependencies across cell lines

To quantify how well our models predict those genes with high dependency scores in only a few 

cell lines we trained our models on all cell lines and then performed validation on test sets filtered 

for the rarity of the acquired essential genes being predicted.
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580 of the total 4030 (~14.3%) essential genes in our training data were identified as essential in all 

39 cell lines. 2424 (~60.1%) were essential in more than half of the cell lines and 821 (~20.3%) of 

the total genes were specific to just one cell line.  We created test sets featuring genes that occurred 

in just 1 cell line, below 10, 20, 30 in all 39 cell lines to calculate how well our models performed at

each gene dependency rarity interval.

Of our four models, three (our base PPI network, proportional to tissue and proportional to all 

models) had similar levels of predictive ability for gene dependencies found in all cell lines in our 

training data. Across the other rarity intervals though the proportional models performed slightly 

better than the base PPI model.

The final model, our raw expression model outperformed the other models by some margin 

reporting a mean ROC AUC 0.660 when predicting genes that were reported as a dependency in 

only 1 cell line (compared to base model’s 0.615), 0.681 for genes that showed dependency in less 

than 10 cell lines (compared to 0.621), 0.711 (compared to 0.644) for genes in less than 20 cell 

lines, 0.727 (compared to 0.665) for genes in less than  30 cell lines and 0.801 for all gene 

dependency rarities (compared to 0.758 for the base PPI model) (figure 4.).

Our models are fairly robustness to PPI networks 
incompleteness

It is known that current PPI networks models are both incomplete and suffer from ascertainment 

bias in that some proteins are better studied than others (Mosca et al, 2013; Rolland et al, 2014; 

Huttlin et al, 2017). In order to quantify how the incomplete nature of the PPI networks affects the 

robustness of our models, we repeated our classification pipelines with revised PPI networks data 

randomly holding out 25% of the data from original network.  In the case of the 25% holdout PPI 

networks network we observed minimal loss of predictive power from our raw expression cross cell
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line model with mean reported performances of AUC ROC 0.78 (s.d. 0.011) from and 0.801 (s.d. 

0.006).

We conclude that while an increasingly complete PPI network may improve their predictive 

performance our current models are fairly resilient to the incomplete nature of the currently 

available PPI networks data.

Creating a pan tissue cell line training set

To maximize the amount of training data available for use by our classifiers for the prediction of 

gene dependencies in previously unlabelled cell lines we concatenated all available cell line training

sets from all tissue types into one super set.  We used our raw expression models for this super set 

based on their relatively high overall performance during previous validation.

In an attempt to estimate how well this concatenated data should perform for the prediction of gene 

dependency in unlabelled data sets we once more validated each of our individual test sets based on 

models trained using our super training set.

We found that our super training set classified gene dependencies across all cell lines with an AUC 

ROC of 0.843 (s.d. 0.012), a further improvement on the individual raw expression models mean 

cross cell-line AUC ROC score of 0.801 (s.d. 0.006).

This model provided the most predictive power and as such represents the most suitable available 

for predicting gene dependencies in cell lines with no prior labeling as discussed below.
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Predicting and validating gene dependencies in previously 

unlabelled cancer cell lines.

To create a set of predictions we took 38 cell lines previously unlabelled for gene dependency, 16 

for breast, 13 for kidney and 8 for pancreas. Each of these cell lines were chosen based on the 

amount of mutation and expression training data available.  We used our pan-tissue training set to 

train our classifiers and produced a full set of predictions for each of these cell lines.  

Survival screens focusing on a library of 240 genes involved in the DNA damage response (DDR) 

were repeated in triplicate for the MCF7 breast cell line.  Cell viability was reported using a z-score 

where positive numbers suggested a cell’s viability increases with the knockdown of the predicted 

gene, negative scores suggests a decrease in viability and z-scores below -1 constitute a true 

dependency. The variance of results across all three repeats was high.  This may have been due to 

the choice of library.  The loss of genes involved in the DDR can often lead to genomic instability 

in  a cell.  Knocking out  a single gene (eg MSH3) can  cause the subsequent loss of different sets of

genes, resulting in different sets of dependencies. 

We ranked all of our predictions for MCF7 by dependency likelihood score. Filtering for likelihood 

scores to keep predictions of above 0.85 and below 0.15 and treating negative z-scores as a hit we 

report an accuracy of 0.64 with a sensitivity of 0.73 and a false discovery rate of 0.38 based on 

experimental validation for the MCF7 cell line.  Next, we extracted the top 10 predictions. 8 of our 

top 10 predictions showed signs of essentially with a mean negative z-score. Two of these top 10 

predictions, PARP1 and TRIM28, reported a z-score of less than -1 in at least one repeat (table 4). 

Only 7 of the 240 genes screened and classified for in the MCF7 cell line reported a mean z-score 
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of less than -1 in all 3 repeats and 2 of these, MEN1 and CHEK1 were predicted as gene 

dependencies with a score of over 0.85 (table 5).  

Therapuetic opportunites in cancer dependency genes

Using Cansar’s cancer protein annotation tools  (Bulusu et al, 2014)  we labelled our predicted 

dependency genes,  based on their respective protein products, as either a drug target, druggable or 

non-druggable (Figure 5). The proportion of known drug targets in our predicted gene set was 

slightly lower than those in our training data at 0.7% compared to 1.1%. The proportion of 

predicted druggable genes based on three dimentional structure was higher at 45.1% compared to 

34.2% in our training set. We found therapuetic opportunities in almost every cell-line in both our 

training data and prediction set both in the form of genes with known drugs and genes that exhibit 

druggable traits.

Discussion
Protein-protein interaction maps provide us with a robust model of how the proteome is organised. 

Here we find that the topological relationships across these maps tends to be different for essential 

genes and non-essential genes, opening up the opportunity for predicting gene dependency. We find 

that topological features can be used to predict gene dependency in human cell lines with ROC 

AUC scores of up to 0.84. This is an improvement on accuracy reported by previous studies that use

PPI network models to predict essential genes in S. cerevisiae (Saha & Heber, 2006) and E coli (da 

Silva et al, 2008).

Jeong et al’s seminal publication (Jeong et al, 2001) was the first to show a correlation between 

degree centrality, i.e. the number of edges leading in or out of a given node, and gene essentiality. 
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We find here that it is possible to use these and other topological features to predict essential genes 

and acquired essential genes in previously unseen cell lines, using models trained on different cell 

lines. We note though that the topological features that are predictive of gene dependency such as 

eigencentrality are predominantly measures of a protein’s connectedness. These features are robust 

to the type of network perturbations caused by changes in gene expression and mutations. This 

suggests that modified PPI networks can only provide a partial picture of gene essentiality. 

We described how the standard Protein Protein Interaction Network does not capture the massive 

cell reorganisation seen in cancer, due to genetic mutations, copy number variances and epigenetic 

changes affecting gene expression. By personalising our PPI networks to reflect some of these 

changes we were able to model our cells lines better and improve predictive power gene 

dependency classification. This improvement is particularly noticeable for those genes we are 

particularly interested in, ie the genes which are essential in only a few cell lines. 

Despite the relatively high performance of our classifiers we are aware that the association between 

gene expression and protein expression is only partial and so it is likely that further improvements 

will be possible for this type of model when it is possible to modify the PPI network as a result of 

protein expression as well as existing ‘omic data. 

Additionally consideration of the biological nature of the protein interactions reported as well as 

improvements to the completeness of our source PPI networks is also likely to lead to significant 

improvements in this type of study. In particular our source protein-protein interaction network 

provides only non-directional, binary information about interactions between proteins rather than 

the inhibitory or excitatory nature of the interaction. Although we report that our models are 

relatively robust to incompleteness in the source networks we expect that as the completeness and 

sophistication of PPI models improves so will the effectiveness of this type of model.
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Methods
Constructing the base PPI

Our base protein-protein interaction data was obtained via the STRING database (v.10) (von Mering

et al, 2005). This data was filtered to include only interactions with an experimental score higher

that  80  to  ensure  each  interaction  was  reliable.   The  ENSP protein  IDs  in  this  data  set  were

converted to their respective ENSG gene IDs using Ensembl data (Hubbard et al, 2002). R (version

3.4.0) and the igraph package (version 1.1.2)  (Csárdi & Nepusz, 2006) were used to produce a

network model of the PPI data for each cell line.

Essentiality data and labelling

The Tsherniak et al.  (Tsherniak et al, 2017)  survival screen data, via project Achilles, provides a

likelihood  score  for  each  gene  in  each  cell  line  being  a  essentiality.  We  the  same  likelihood

threshold as Tsherniak et al. to label each gene in our model as a gene dependency, those above 0.65

or non- dependency those below 0.65 for each cell line.

Perturbing the PPI

All edges in the directed PPI network have a weight in (0,1] which reflects the strength of 

expression of the initial protein, i.e. proteins that are not expressed have edges of weight 1 

emanating from them, and as expression increases so the weight reduces. These weights are 

determined by modifying RNA seq data to reflect the loss and gain of function of proteins with 

mutated gene sequences. 

In order to create these weights, RNA seq data from was downloaded from the Cancer Cell Line 

Encyclopaedia (Cancer & Line, 2015) , and mutation data was downloaded from Tsherniak via 

Achilles (Tsherniak et al, 2017).
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Mutations that lead to loss and gain of function were identified as follows. Frameshift indels were 

assumed to lead to loss of function. The program SIFT (Kumar et al, 2009) was then used to 

separate out the missense mutations that have no functional impact. The remaining missense 

mutations were categorised as leading to either loss of function or gain of function using a version 

of  the MOKCARF algorithm. MOKCARF uses features from Mutation Assessor (Reva, B.A., 

Antipin, Y.A. and Sander, 2010), Polyphen2 (Adzhubei et al, 2013) and FATHMM (Shihab et al, 

2013) as input to a ADA boost classifier which has been trained on protein domains mutated in 

proto-oncogenes, or tumour suppressor to identify loss or gain of function.

Gain of function is assumed to have a multiplicative impact on RNA expression (set here to a factor 

of 10), whilst loss of function sets the resulting weight to 1.

weight ( p)=max (0.5∗(1− tanh( ln(ex ( p)∗gof ( p)))), lof (p))

where ex(p) is the RNA_seq expression associated with protein p

gof ( p)=10 if there is a mutation in the gene associated with protein p leading to gain of 

function, otherwise 1.

and lof ( p)=1  if there is a mutation in the gene associated with protein p leading to loss of 

function, otherwise 0.

Feature generation

R and the igraph package were used to extract 14 network topology features for each cell line’s 

protein interaction network described in table x.
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Preprocessing feature data

To improve performance in cross cell line classification each cell line’s feature set was normalised

(Jacunski et al, 2015). To ensure unbiased validation we held-out 20% of this data to be used as a

test set leaving 80% to be used as training data.

Model validation

Classification  was  performed  using  the  R  caret  library’s  “ADA”  boosted  classification  trees

classifier.  5-fold  cross  validation  was  applied  to  each celllines  training  data  to  select  the  most

optimised set of hyper-parameters. The ADA classifier as implemented in the caret library has three

hyper-parameters to optimise, number of trees, max tree depth and learning rate. 

A final model using these optimised hyper-parameters was then used to predict against the hold-out

test set to assess predictive performance within each cell line and between each cell lines.  These

predictions were outputted as the probability of each class, essential or non-essential.

Pan-cancer model and unlabelled predictions

To predict dependency genes in unlabelled cell lines we first concatenated all training data into one 

large labelled training data set.  We produced a number of feature sets for cell lines that were not 

included in the original training data and predicted dependency genes in these unlabelled cell lines 

based on a model trained on the pan cancer set.

Experimental validation

We chose a single unlabelled cell line, MCF7, for experimental validation. MCF7 was not featured 

in our training data and was chosen based on ready availability and good class balance for 

predictions on genes featured as part of the available DDR gene library.
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We performed a high-throughput siRNA screen for experimental validation. Human breast 

(adenocarcinoma) MCF7 cells (validated by ATCC STR.V profiling) were grown in MEM 

supplemented with 10% FCS, penicillin/streptomycin and L-glutamine at 37oC and 5% CO2.       

Cells were reverse transfected with library siRNA using lipofectamine RNAiMAX (as per the 

manufacturer’s instructions) in black 96 well plates. Plates were incubated at 37oC, 5% CO2 for 72 

hours. CellTitre-Blue was added to determine cell viability, plates were analysed using a plate 

reader at 560/590nm.

Druggability annotation

Druggability annotation was performed using Cansar Black’s cancer protein annotation tools 

(Bulusu et al, 2014). We designated any genes with a “nearest drug target” score of 100% as a 

known drug target and any gene with one or more predicted drug targets in three dimentional 

structures that exhibited 100% homology with the respective gene’s sequence Identity.
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Figures
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Figure 1 – Genedependency signatures derived from non-negative matrix factorisation

a. A clustered heatmap shows the clustering of gene dependency signature prominence across cell 

lines.  Dependency signature prominence sourced via the basis matrix (also known as matrix W) 
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given by negative matrix factorisation. 

b. Enrichment analysis shows that tissue type is predictive of prominent gene dependency signature.

Signature 6 for example is fully enriched for kidney cell lines, signature 2 for breast and signature 3

prominently features  pancreatic cell lines.

c. The composition of each gene dependency signature given by the mixture coefficients matrix (or 

matrix H)
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Figure 2. a. Plots of the PPI network graphs for breast cell line AU565 BREAST highlighting 

acquired essential genes in red suggests clustering of these gene dependencies. 
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Figure 3. AUC ROC plots for each PPI model show that our raw expression model exhibits the 

largest AUC ROC, and therefor the best performance, while the base PPI model shows the worst 

performance.
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Figure 4. Model performance across gene dependency rarity intervals shows the general improved 

perforamnce of the raw expression model. Each coloured line represent a models performance at 

each interval as per the legend and the blue bars represent the distribution of genes at each rarity 

level. For example 200 genes are reported to be dependency genes in exactly 3 cell lines.
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Figure 5.  Dependency gene druggability counts by cell line. a. A histogram of dependency gene 

counts per cell line in our training data stratified by druggability status as reported by cansar black’s

cancer protein annotation tools. b.  Predicted dependency gene druggability count by cell line.

Tables
Sig 1 Sig 2 Sig 3 Sig 4 Sig 5 Sig 6

GART FOXA1 EFR3A POLG ELMO2 PAX8

ATIC STX4 KRAS MRPL23 GPX4 MDM2

CAD MARCH5 TUBB4B MRPL46 ITGAV HNF1B

PAICS TADA1 RAB6A HUS1 VPS4A RPP25L

PFAS EP300 SLC7A1 LARS2 FERMT2 PARD6B

32 of 42



NAMPT FBXW11 MYH9 MRPL17 SEPSECS ZFP36L1

FPGS CCDC101 ARHGEF7 QRSL1 MARCH5 POLE3

UMPS PIK3CA VPS4A DCPS CHMP3 CDK6

LIAS CDK4 ADAR PMVK UBIAD1 FERMT2

OGDH MED1 EAF1 TXNRD1 SMARCA4 C16orf72

Table 1. Prominently differentiated genes between gene dependency signatures. For each signature 

every gene was ranked by distance from the mean score given by the basis matrix compared to the 

same gene across all other signatures.

Feature name Description

Betweenness The number of shortest paths in the entire graph that pass 
through the node.

Constraint Related to ego networks. A measure of how much a node’s 
connections are focused on single cluster of neighbours.

Closeness The number of  steps required to reach all other nodes from a 
given node.

Coreness Whether a node is part of the k-core of the full graph, the k-core 
being a maximal sub-graph in which each node has at least 
degree k.

Degree The number of edges coming in to or out of the node.

Eccentricity The shortest path distance from the node farthest from the given 
node.

Eigen centrality A measure of how well connected a given node is to other well-
connected nodes. 

Hub score Related to the concepts of hubs and authorities the hub score is  
a measure of how many well linked hubs the  nodes is linked to. 

Neighbourhood n size The number of nodes within n steps of a given node for n of 1, 
2, 5 and 6

Table 2. List of graph topology features extracted from protein interaction network data with 

descriptions
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PPI networks 
treatment

Description Within Cell line mean 
AUC ROC

Across all cell lines 
mean AUC ROC

Base PPI network Non-directional PPI 
network sourced via 
STRING.

0.765 (s.d. 0.024) 0.758 (s.d. 0.007).

Compared to tissue 
type

Gene expression 
normalised against all 
cell lines of same tissue
type.

0.778 (s.d. 0.021) 0.756 (s.d. 0.128)

Compared to all Gene expression 
normalised against all 
cell lines.

0.781(s.d. 0.023) 0.756 (s.d. 0.01)

Raw data Raw gene expression 
data via Cancer cell 
line encyclopaedia 
(CCLE).

0.812 (s.d. 0.023) 0.801 (s.d. 0.006)

PPI networks 
treatment

Description Within Cell line mean 
AUC ROC

Across all cell lines 
mean AUC ROC

Base PPI network Non-directional PPI 
network sourced via 
STRING.

0.765 (s.d. 0.024) 0.758 (s.d. 0.007).

Compared to tissue 
type

Gene expression 
normalised against all 
cell lines of same tissue
type.

0.778 (s.d. 0.021) 0.756 (s.d. 0.128)

Compared to all Gene expression 
normalised against all 
cell lines.

0.781(s.d. 0.023) 0.756 (s.d. 0.01)

Raw data Raw gene expression 
data via Cancer cell 
line encyclopaedia 
(CCLE).

0.812 (s.d. 0.023) 0.801 (s.d. 0.006)
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Table 3. Mean model performance when predicting gene dependencies within each cell line (where 

training and test datasets were sourced from a single cell line) and across cell lines (where training 

was sourced from one cell line and used to classify all other cell lines). Performance measured with 

mean AUC ROC scores.

Gene name Z-score Dependency Likihood

RAD23B -0.4723 0.9741

RAD23A 0.2654 0.9713

PRPF19 -0.3052 0.9704

SHFM1 -0.3754 0.9681

TP53BP1 0.7196 0.9554

RUVBL2 -0.0575 0.9538

TRIM28 -0.6968 0.9470

XRCC5 -0.2933 0.9467

RAD1 -0.4956 0.9455

XAB2 -0.7499 0.9360

Table 4. Top 10 dependency gene predictions with likelihood score reported by our pan-tissue 

classifier and z-scores from the MCF7 DDR library survival screens. Negative z-scores suggest that

the knockout of a predicted gene impacts cell viability and z-scores of below 1 suggest dependency.

8 of these 10 genes showed negative z-score with XAB and TRIM28 reporting a z-score of less than

-1 in at least one repeat of the screen.
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Gene name Z-score Dependency likihood

POLA1  -1.9200 0.6750

MEN1   -1.6886 0.8546

PNKP -1.5129 0.5851

LIG3 -1.4379 0.3555

CHEK1  -1.2784 0.8503

EME1    -1.2168 0.4798

RBBP8 -1.2160 0.7818

PARP1 -0.9221 0.8987

ERCC2 -0.9021 0.6446

RECQL5 -0.8604 0.5324

Gene name Z-score Dependency likihood

POLA1  -1.9200 0.6750

MEN1   -1.6886 0.8546

PNKP -1.5129 0.5851

LIG3 -1.4379 0.3555

CHEK1  -1.2784 0.8503

EME1    -1.2168 0.4798

RBBP8 -1.2160 0.7818

PARP1 -0.9221 0.8987

ERCC2 -0.9021 0.6446

RECQL5 -0.8604 0.5324
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Table 5. The 10 lowest genes by reported z-score in the MCF7 cell line with dependency likelihood 

scores given by our pan-cancer classifier.  3 of these, MEN1, CHEK1 and PARP1 obtained 

dependency likelihoods of over 0.85 and 8 of the 10 scored over 0.5.
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EV Figures

Figure EV 1. Number of cell lines available after filtering for public accessibility, tissue type and 

genetic alteration data availability.
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Figure EV 2. - Measuring the relationship between generic alteration levels  and count of gene

dependencies in cell lines

a. By plotting the number of gene dependencies reported for each cell line against a measure of that 

cell lines genomic alteration we find a small positive correlation between the two. 
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b. Shuffling the data and then finding the correlations for this data demonstrates that our correlation 

is statistically significant p-value=0.012.

 

Figure EV 3. Feature distributions between dependent and non-dependent gene classes show some   

differences between the classes for the betweeness, constraint, eigen centrality and hub_score 

features
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Figure EV 4. Importance for each feature used in each model calculated by measuring the mean 

decrease in accuracy when holding out each variable across all tree permutations in the random 

forest.
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Figure EV 5. Survival screen’s z-score distribution with variation. This box plot graphs each gene 

featured in the survival screen with its z-score distribution across 3 experimental repeats. Blue 

boxes denote genes which were featured in our prediction set. White boxes denote genes that were 

not in our prediction set due to insufficient training data (i.e. mutational or copy number data).
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