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Abstract 

Systematic perturbation of cells followed by comprehensive measurements of molecular          

and phenotypic responses provides an informative data resource for constructing          

computational models of cell biology. Models that generalize well beyond training data            

can be used to identify combinatorial perturbations of potential therapeutic interest.           

Major challenges for machine learning on large biological datasets are to find global             

optima in an enormously complex multi-dimensional solution space and to          

mechanistically interpret the solutions. To address these challenges, we introduce a           

hybrid approach that combines explicit mathematical models of dynamic cell biological           

processes with a machine learning framework, implemented in Tensorflow. We tested           

the modelling framework on a perturbation-response dataset for a melanoma cell line            

after drug treatments. The models can be efficiently trained to accurately describe            

cellular behavior, as tested by cross-validation. Even though completely data-driven and           

independent of prior knowledge, the resulting ​de novo network models recapitulate           

known interactions. The main predictive application is the identification of combinatorial           

candidates for cancer therapy. The approach is readily applicable to a wide range of              

kinetic models of cell biology.  
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Introduction 

The emergence of resistance to single anticancer agents has highlighted the           

importance of developing combinations of agents as a more robust therapeutic           

approach to cancer treatment​1–4​. However, experimental screening of all possible          

pairwise or higher order combinations of currently available agents is practically           

unrealistic. The space of potential new therapeutic targets is even larger and more             

challenging to explore experimentally. To efficiently narrow down the search space and            

nominate promising sets of experimentally testable candidates, computational models         

have been used to predict cellular responses based on sets of perturbation            

experiments​5–7​, but these have been limited in scope. The ability to model cell biology at               

a larger scale and to infer causal mechanisms to generalize to unobserved            

perturbations is critical in facilitating the search for combinatorial, potentially therapeutic           

candidates. 

 

In order to understand cell behavior, various experimental approaches have been used            

to profile cellular responses under different perturbations. Biochemical and cell          

biological experiments testing relationships of particular protein-protein pairs have for          

many years been successfully used to identify signaling cascades​8–10​, but one-by-one           

experiments are laborious and the resulting models, while insightfully descriptive,          

typically are limited in quantitatively predicting both detailed molecular and system-level           

cell responses. Phenotypic screening collects high-throughput information on whole-cell         

responses with univariate readouts such as cell viability or growth rate​11–15​. In order to              

resolve intracellular interactions and provide mechanistic insights, systematic methods         

have been developed to profile post-perturbational molecular responses, e.g. changes          

in transcript​16–18 and protein​19,20 levels. These rich datasets challenge computational          

methods to efficiently discover mechanisms and accurately model cell responses. 
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Various computational methods have been developed to predict cellular responses​21​.          

Static models use, e.g., differential expression analysis​22​, co-expression network​23–25​,         

maximum entropy network​26,27​, or mutual information​28​, to correlate cellular responses          

with perturbations and/or molecular measurements​29,30​. On the other hand, dynamic          

models, such as Boolean network models​31​, fuzzy logic models​32​, dynamic Bayesian           

networks​33 and ordinary differential equation (ODE) network models​34​, can provide          

mechanistic insight in terms of propagation of cellular signals to phenotypic response            

over time, but typically require prior knowledge of interaction parameters and thus only             

work for small systems​34,35​. For large systems, dynamic modeling becomes challenging           

due to insufficient prior knowledge, e.g., in that prior information is not available for all               

components or is aggregated from disparate experimental sources and thus lacks           

uniform context. A more rigorous approach is to use uniform datasets generated in             

systematic experiments in one experimental context and then perform de novo structure            

inference of an interaction network valid for that context. Given such data for large              

systems, the computational challenge is to search for optimal interaction parameter sets            

in a complex multi-dimensional solution space. Previous dynamic optimization         

approaches such as Monte Carlo（MC）methods and belief propagation (BP)         

algorithms, have been used to construct data-driven network models​19,35–38​, but these           

may not efficiently scale to larger systems (e.g., MC) or may require excessive             

approximations for the chosen mathematical model to facilitate efficient exploration of           

solution space (e.g., independent row approximation in BP)​19,38​. Therefore, to achieve           

good accuracy of parameter inference for larger systems and to gain the ability to              

generalize to more sophisticated kinetic models, a more general and potentially more            

powerful data-driven modeling framework would be very useful. 

 

Recently, deep learning has become an effective data-driven framework capable of           

generating predictions for large and complex systems. Gradient descent implemented          

with automatic differentiation, which has been broadly used in training graphical models,            

allows efficient parameter optimization in complex network systems. This framework          
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has been successfully applied to many domains of biomedical research, from pathology            

image classification​39,40 to sequence motif detection​41​. While predictive power of deep           

learning models is often impressive, their interpretation, which is crucial for providing            

understandable and therefore more trustable predictions, remains challenging. The         

complex multi-layer network architecture of most deep learning models lacks explicit           

representations and therefore direct interpretation. This difficulty is sometimes called the           

“black box” problem​42​. To address this problem, we apply a deep learning optimization             

approach to learn a data-driven model (called “Cellbox”) that incorporates an explicitly            

interpretable network of interactions between cellular components, instead of a          

black-box neural network, while aiming to maintain a high level of learning performance.  

 

Cellbox is designed to be a framework for computational modeling of cellular response             

to perturbations that i) links perturbations to molecular and phenotypic changes in a             

unified computational model; ii) quantifies time-dependent (dynamic) cellular responses;         

iii) promises training efficiency and scalability for large-scale systems; iv) is interpretable            

in terms of interactions that can be compared to established models of molecular             

biology, such as signaling pathways. Here, we construct a non-linear ordinary           

differential equations (ODE) based model that represents a biological network of 99            

components connecting perturbations, protein response, and phenotypes to simulate         

dynamic cellular behavior. The network connections are directly learned from          

post-perturbational data under 89 experimental conditions with the objective of          

accurately reproducing the cellular and molecular responses on training data and           

withheld data. To reach this objective, we implemented gradient descent with automatic            

differentiation to infer interaction parameters in the ODE network, which can then be             

exposed to novel perturbations. The key performance criterion for the data-driven model            

trained with a relatively small set of experiments is whether the model is able to provide                

reasonably accurate predictions on a large set of unseen perturbation conditions.           

Anticipating the availability of increasingly informative perturbation-response data sets         
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in diverse areas of cell biology, we present Cellbox as a generally applicable framework              

for modeling a broad range of dynamic cell behavior. 
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Results  

Cellbox model of perturbation biology 
In order to construct a data-driven model to predict the dynamics of molecular and              

cellular behavior under combinations of drug treatments, the perturbation data has to            

have 1) paired measurements of changes in protein levels and cellular behavior for a              

set of perturbations; and 2) training and withheld data to test model performance. Here,              

we use a perturbation dataset for the melanoma cell line SK-Mel-133​19​, which contains             

molecular and phenotypic response profiles of cells treated with 12 different drugs and             

their pairwise combinations (Figure 1a). For each of the 89 perturbation conditions,            

levels of 82 selected proteins and phosphoproteins were measured in cell lysates            

before and 24 hours after perturbation on antibody-based Reverse Phase Protein           

Arrays (RPPA). In parallel, cellular phenotypes were assayed, including cell cycle           

progression and cell viability. With parallel measurements of proteomic and phenotypic           

responses to a systematic set of perturbations, this dataset provides sufficient           

information to construct network models that quantitatively link molecular changes to           

cellular responses. 

 

We used a set of differential equations (ODEs with a non-linear envelope) (Figure 1b) to               

model the dynamic responses of the system to drug perturbations (See Methods). The             

parameters of the ODEs ( , ~10,000 in total) are the interaction strengths between    wij          

the entities in the network model. These parameters were randomly initialized and            

updated throughout the model training process, with the objective to minimize a            

prediction performance loss function. For the loss function, we chose the Euclidean            

distance between experimental data and the results of the numerical simulation of the             

ODE model, plus an L1 regularization penalty on network density to avoid overfitting             

(See Methods). We used Heun’s ODE solver​43 to numerically simulate the ODE system             

and the Adam optimizer​44 with automatic differentiation to minimize the loss function.            
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Taken together, we constructed an ODE model of a cell biological system trained using              

perturbation data, which we named Cellbox.  

 

 

Figure 1. Cellbox: dynamic modeling of cellular systems with perturbation data. 

a. Perturbations such as drugs are used to disturb the cellular system. The cell              

responses, including protein and phosphoprotein level changes, and phenotypic         

changes, were measured to provide information for model construction. ​b. Systematic           

responses of the cellular system under various drug perturbations were used to            
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construct an interpretable machine learning model. Cellbox models system behavior in           

terms of interaction parameters among system variables using a differential equation           

system. Cellbox was trained iteratively by changing interaction parameters to fit the            

numerically simulated system response to experimental observations. After training on          

pairwise data of input perturbation and output system behaviors, the Cellbox model can             

be used to predict the cellular response to arbitrary perturbation conditions.  
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Cellbox can be trained on perturbation data to accurately predict cell response.  

In order to test the prediction performance of this training scheme, we randomly             

selected 70% of the perturbation data (n = 62 conditions) for training and withheld the               

rest 30% (n = 27 conditions) for testing. 20% of the training data was used as a                 

validation set to stop model training when the performance on the validation set did not               

further improve. We manually fine-tuned the hyperparameters, including learning rate,          

regularization, and ODE simulation time, to increase the training efficiency (Figure S1;            

Supplementary Note 1). At the end of the training, the numerical solutions of the ODE               

model converged efficiently to experimental data (Figure 2a, 2b). We repeated the            

modeling scheme with random data partitions to construct 1,000 models for each            

partition. The average predictions on test sets across all models and all conditions             

correlate with experimental data with a Pearson’s correlation coefficient of 0.94 (Figure            

2c). A more refined analysis of individual perturbation conditions showed that the model             

trains equally well for all conditions and does not bias any particular condition (Figure              

2d, Figure S3). The results illustrate that the Cellbox model can be efficiently trained              

with perturbation data to accurately predict cell response to experimentally applied           

perturbations.  

 

Even though ~70% of the models reached steady solutions of the ODEs (Figure 2b),              

some models converged to oscillatory solutions (Figure S2a). In order to test whether             

the oscillation is an artifact of data partitioning during model training, we re-trained the              

models with the same train-test data partitioning but multiple different random seeds for             

the computational optimizer (See Methods). For each individual partition of training           

data, both steady and oscillatory solutions can result (Figure S2). We therefore            

conclude that due to stochasticity during model training and complexity of the solution             

space of our optimization problem, both oscillatory and steady solutions can arise and             

are able to describe the data. Based on the experimental assumption that the             

population average of cell response reaches a stable and non-oscillating steady state            

after 24 hours after drug treatment, we excluded the oscillatory models in the following              
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analysis (See Methods). Taken together, these results indicate that Cellbox, a           

data-driven ODE-based cellular system model, can be trained to accurately predict           

dynamics of cell response, without any requirement of prior knowledge about the            

relationship between particular protein levels and phenotypes. 

 

 

Figure 2. Cellbox convergence and prediction accuracy on randomly partitioned          

training/test datasets. 

a. Over training iterations, the mean squared error on the training set (56% of the entire                

dataset), validation set (14%) and test set (30%) decreased nearly monotonically and            
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the models converged at the end of the training. ​b. ​The predicted molecular and              

phenotypic responses at the steady state of the ODE simulations agree with the             

experimental data on the test set. A subset of molecular measurements (MAPKpT202,            

YB1pS102, MEKpS217, and p27) and phenotypic measurements (G2M and G1arrest)          

are shown. Cell response is defined as log ratio of post- and pre-perturbation             

measurements. The annotations and the full set of measurements are in Supplementary            

Table S1. ​c. Across 1,000 models trained with different data partitions, the average             

predicted responses correlate with experimental observations (Pearson’s correlation ​ρ ​=           

0.944, regression line in dark blue with 95% confidence interval). Each point represents             

one measurement, either molecular or phenotypic, in one perturbation condition. ​d.           

Nearly all predictions for individual conditions have high correlations with experimental           

measurements. 

 

 

 

Cellbox model predicts cell response for single-to-combo and 

leave-one-drug-out cross-validations. 
Even though the model makes accurate predictions with different training data, data            

partitioning, especially random partitioning, raises the concern of information sharing          

between training and test datasets. Combinatorial conditions in both datasets might           

share the same drugs such that the test set might not be truly independent of training                

and therefore is suboptimal for rigorous evaluation of the model performance. Moreover,            

the ability to predict the combinatorial effect of a drug, e.g. dominant, additive,             

synergistic, when none of its combinations has been seen by the model, is a non-trivial               

challenge in the context of making accurate predictions of experimentally untested drug            

combinations. 

 

In order to address these points, rather than training the model with random data              

partitioning, we instead designed more rigorous tasks: single-to-combo (Figure 3a) and           
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leave-one-drug-out cross-validation (Figure 3b, 3c) for each drug. In single-to-combo          

analysis, all single-drug treatment conditions were used for training and prediction was            

tested on all combinatorial drug conditions. In leave-one-drug-out cross-validation, all  

the combination conditions containing treatment of a particular drug with or without the             

corresponding single drug conditions were withheld while the rest of the conditions were             

used for training. In these more stringent tests, we found that the predicted values for               

withheld data were still highly correlated with the experimental observations (average           

Pearson’s correlation: 0.93 for single-to-combo; 0.94 for leave-one-drug-out with single          

conditions, similar to that of the training with random partition; 0.79 for complete             

leave-one-drug-out). Under all three scenarios, on this dataset, Cellbox outperforms the           

belief propagation (BP) dynamic model approach also used in perturbation biology​19 in            

terms of predictive accuracy. These results indicate that the Cellbox model can be             

trained with a relatively small set of perturbation data and that its predictions can be               

generalized to unseen combinatorial perturbations.  

 

Cellbox models are dynamic network models of a cell biological system. To test whether              

Cellbox increases model predictive power, we compared the results to those of a static              

biological network model and a deep neural network model. The static network model             

was constructed by learning co-expression correlation for each pair of protein nodes            

(Co-exp) while the deep neural network model was trained to directly regress            

phenotypic changes against parameterized perturbations (NN) (see Methods). In all          

three tasks, the static network models had lower accuracy relative to the dynamic             

Cellbox. The NN had comparable performance to Cellbox in the cross-validation for            

individual drugs, but its performance dropped significantly in the single-to-combo          

analysis (Figure 3a). Note that the NN was also unable to generalize to unseen targets               

whose information is completely excluded from training (Figure 3c). Taken together, due            

to the lack of mechanistic and dynamic information, static network or direct regression             

models appear to be less suitable for facilitating the search of combinatorial targets.  
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Figure 3. Cellbox models are accurately predictive of cell response for           

single-to-combo and leave-one-drug-out cross-validations. 

a. ​When only single conditions were used for training (single-to-combo), the Cellbox            

models predict the effects of combinatorial conditions with good accuracy and           

outperform the dynamic network models inferred using belief propagation (BP), the           

static co-expression network model (Co-exp), and a neural network regression model           

(NN) trained on the same data. ​b. When combinatorial conditions associated with one             

drug were withheld from training, the Cellbox models retain high accuracy for predicting             

the effects of unseen drug pairs. ​c. When all conditions associated with one drug were               

withheld from training, the ODE network models predict the effects of the withheld drug              

with reduced accuracy but direct regression models such as NN cannot generalize to             

unseen targets at all. For each model type, performance was evaluated by Pearson’s             

correlation between predicted cell response and experimental cell response. 
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Model performance is robust against noise and reduced training set size 

To examine model robustness of the Cellbox models against reduction in training data,             

we tested the stability of model performance when the data quality or quantity is              

compromised. To test the former, we introduced different levels of Gaussian noise (see             

Methods) into the input molecular and cellular response data and trained models on the              

resultant noisy datasets. When comparing the predicted response in test sets to the             

experimental data, we found that the predictions from training on the noisy data retain              

similarly high correlations to experimental data as those trained on the original data,             

even with the addition of 5% Gaussian noise (Figure 4a). As the magnitude of the noise                

increases, the model performance gradually decreases in terms of both convergence           

(Figure S4) and predictive power (Figure 4a). We concluded that model performance is             

stable in the presence of moderate experimental errors. 

 

To test the dependency of model performance on data quantity, we trained the model              

on subsamples of the experimental dataset. We trained models with varying amounts of             

data (from 10% to 90% in steps of 10%) and found that the models could make                

accurate predictions of withheld data with as little as 40% of the complete dataset              

(Figure 4b). We found that increasing the size of the training set further has diminishing               

returns in terms of model performance. This implies, on the data set used here with an                

interaction network of ~100 components, that a comparatively small number of           

perturbation conditions (40-100, rather than directly testing all ~3,000 possible          

combinations) are sufficient for constructing reasonably predictive models. This         

example may be a useful guide for power calculations for systems with hundreds of              

measured components, which would be of considerable interest.  
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Figure 4. Model performance is stable against data noise and data reduction. 

a. ​Correlation between predicted responses and experimental responses in the test set            

decreases as an increased level of noise is added to the training data (each dot               

represents one model). ​b. Correlation between predicted responses and experimental          

responses in the test set increases with increasing quantity of data used for model              

training. For the current dataset, the correlation plateaus when 40% of the original             

dataset is used. 

 

The network model gives interpretable results in biological contexts 

We used ordinary differential equations as the core framework of the current version of              

the Cellbox mathematical model. Each parameter in the model represents the strength            

and direction of a biological interaction. In order to investigate whether the inferred             

interactions are consistent with current knowledge of biology, we used the entire dataset             

as training data to generate 1000 full models and examined the resulting ​de novo              

network edges learned from training. We used a t-score (see Methods) as an indication              

of the statistical significance of each interaction, where a higher absolute value indicates             
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higher interaction strength and lower variance across the models (Fig. 5a). Using the             

drugs’ primary targets as the ground truth, we first examined the interactions between             

the drug-activity nodes and their downstream effectors. We found that all 12            

drug-activity nodes had significant edge connections to their primary downstream          

protein effectors with the interaction directions consistent with their expected effects           

(Fig. 5b), suggesting the models were able to capture the literature-provided           

interactions between the drug target and their downstream effectors. To further           

investigate how much the network represents known pathway interactions, we          

examined the most significant (by inferred interaction strength) protein-protein         

interactions (Fig. 5c). Many of these interactions are consistent with what has been             

previously reported, both direct interactions (AKT phosphorylation negatively regulating         

IRS1​45​, GSK phosphorylation of the TSC complex​46​), and indirect interactions (Rb1           

association with cyclin D through p21​47,48​). Therefore, the Cellbox models are able to             

infer, in ​de novo mode, interactions supported by the literature, while other significant             

interactions can be interpreted as either logical interactions important for predictive           

purposes that are typically mediated via one or more transitive interactions, or potential             

new physical interactions that have not been discovered in molecular experiments. 
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Figure 5. Interpretation of interactions in the network model in biological contexts 

a. The t-score distribution of all interactions across 1000 full models suggests that a              

small fraction of interaction strengths is significantly different from zero. Insets are two             

examples of interaction strength distributions across models. ​b. All 12 interactions           

between drug target (drug activity nodes) and their downstream effectors (red bars in A)              

are significant, and the interaction directions are consistent with the literature. ​c. Most of              

the top significant protein-protein interactions (blue bars in A) can be found as direct or               

indirect interactions in Pathway Commons (PC). The distributions of interaction strength           

across 1000 models for each interaction in the two tables with corresponding colors are              

centered away from zero, in contrast to the background distributions of aggregated            

interactions across models (gray, all interactions with drug activity nodes in ​a​, all             

protein-protein interactions in ​c​). All other interactions and their t-scores are included in             

Supplementary Table S2.  
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Predictions of unseen perturbations give candidates for drug combinations 

Our results so far indicate that the Cellbox model can be efficiently trained on a               

relatively small set of experimental data to parametrize the differential equations that            

model the behavior of the entire system of nodes and interactions at a reasonable level               

of predictive accuracy. This model can then predict cell responses to a full range of               

single and combinatorial unseen perturbations, that would be laborious and costly to            

test exhaustively by experiment. In order to nominate effective drug combinations for a             

much reduced number of focused experiments, we used simulations of the 1,000 full             

models to quantitatively predict the dynamic cell responses to ~160,000 in silico            

perturbations, including different dosages of single perturbations on each protein node           

as well as all pairwise combinations (see Methods). For each perturbation condition, we             

averaged the predictions across all models and ranked the perturbations by predicted            

phenotypic changes (Figure 6a).  

 

Previous models on the same dataset, using the same differential equations but            

parametrized using belief propagation, had predicted that two drug pairs, MEKi+c-Myc           

and RAFi+c-Myc, would increase G1 cell cycle arrest and this prediction was confirmed             

by experiments​19​. We found that the Cellbox model predicts similar effects for these two              

drug pairs (Figure 6b). In order to identify additional therapeutic candidates, we            

examined the effects of all possible single and pairwise perturbations on cell cycle             

arrest (Figure 6b, 6c). The top-ranked candidates included dominate anti-proliferative          

inhibition (uniform colors in rows or columns) of proteins in the Wnt, MAPK, and              

ERK/MEK pathways, known to be cancer-related. Besides strong single candidates,          

synergistic drug pairs are of potential therapeutic interest (Figure 6b, 6c departure from             

uniform colors). Inhibitory perturbations predicted to have pro-proliferation effects, which          

are undesirable as such, can also lead to effective anti-proliferative candidates via            

indirectly activating perturbations (Figure 6c, top left corner). For example, protein           

nodes can in principle be activated by reducing upstream inhibition or degradation. As             
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the Cellbox model is completely data-driven, the ​de novo predictions represent           

system-specific predictions independent of prior knowledge. 

 

 

Figure 6. Cellbox provides testable predictions of cell phenotype under synthetic           
perturbations. 

a​. For each (phospho)protein node in the network, we simulated the inhibition effect of              

all single and paired inhibitions and used Cellbox to predict the phenotypic change. The              

phenotypic effects are the average prediction of 1,000 independent models trained on            

the full datasets. Probing: experimentally perturbed using drug treatment; profiled:          

measured with RPPA and cellular assay; untested: profiled but not perturbed. ​b​. We             

more closely examined the anti-proliferation effect of two perturbation pairs whose           

effects on cell cycle arrest have been experimentally tested (left two panels,            

c-Myc+MEKi, and c-Myc+RAFi), as well as two other in silico conditions (right two             

panels, GSK3p+MAPKp and MEKp+b-Catenin), by simulating with combinatorial        
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perturbation strengths. ​c​. The effect on cell cycle arrest of pairwise combinatorial            

perturbation of all (phospho)proteins in the network were simulated and used to            

nominate effective pharmaceutical candidates. These in silico inhibitory perturbations         

can result in anti-proliferation effects (red, bottom right) or pro-proliferation effects (blue,            

top left). 
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Discussion 

Quantitative models that are predictive of dynamic cellular responses can be used to             

design combination therapies in cancer. To provide predictions with sufficient accuracy           

and potential mechanistic insight, we integrated machine learning methods with          

dynamic modeling: we applied an optimization algorithm used in deep learning to a             

biologically interpretable differential equation (ODE) system. Our model can be trained           

efficiently and independently of prior knowledge to predict molecular and phenotypic           

responses to unseen perturbations with high accuracy. Although trained on a relatively            

small set of experiments, the model is capable of simulating cell responses to numerous              

arbitrary combinatorial perturbations and dosages applied to nodes repeatedly         

measured under different perturbation conditions. Ranking of cellular responses to the           

in silico combinatorial perturbations by the desired phenotypic outcome, such as           

decreased proliferation, then leads to specific therapeutic hypotheses. 

 

Interpretability of models that are to be used for practical decisions, such as the design               

of combination therapy, helps increase confidence and facilitates the design of focused            

validation experiments and is therefore as important as accuracy​49​. Other aspects of            

Interpretability are transparency, simulatability and transferability. ​Transparency​: by        

using a well-defined mathematical model, Cellbox is designed to be explicitly           

interpretable. In the current ODE model, each individual parameter represents a           

directed and quantitative interaction between cellular components or interaction with          

phenotypic quantities. ​Simulatability​: given a perturbation of the cellular system, the           

ODE simulation indicates how the effects of the perturbation propagate throughout the            

directed network in a time-dependent manner. The models can therefore provide           

mechanistic hypotheses of how the perturbations cause the observable cellular          

responses. ​Transferability​: The current implementation of the model is completely          

data-driven and independent of prior knowledge of cellular interactions, but such           
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information can be included by adding a penalty to the optimization function that             

quantifies the disagreement between inference and prior information for each          

parameter. Once a model is trained, the ​de novo constructed network can be extracted              

and then included in training models for other cell systems, by combining new data or               

prior information with feature​ ​transfer learning between models. 

 

In principle, Cellbox is generalizable to other types of systems and larger systems.             

Other types of models will presumably benefit from automatic differentiation (AD)           

combined with stochastic gradient descent that performs optimization directly for any           

given mathematical ansatz and, therefore, can avoid oversimplified approximations​50​.         

The flexible AD framework allows the models to be easily adapted to various forms of               

cellular kinetics and dynamics. The ability to model larger systems depends both on the              

availability of larger datasets and scalable modeling methods. Larger datasets can be            

obtained by measuring diverse types of molecular data, for example, transcriptomic,           

epigenomic and metabolomic changes​51,52​, by measuring a larger number of molecular           

or phenotypic observables, such as protein levels by mass spectrometry, or by            

multiplexing. A major opportunity for larger datasets may arise from recent cell            

barcoding techniques that significantly increase perturbation throughput relative to         

arrayed experiments​17,53 by measuring transcript levels or antibody levels labelled by           

oligonucleotide or isotopes at the single cell level​54–56​. As Cellbox is implemented in the              

Google TensorFlow framework, it can make use of various advanced machine learning            

techniques, such as dropout, mini-batching, and GPU boosting​57,58 to improve training           

efficiency, which partially addresses the issue of scalability.  

 

A tantalizing but challenging prospect is to apply models derived from this perturbation             

biology approach to other cancer cells that have diverse genetic background, such as             

individual patient tumor samples, e.g., by adding tumor-specific genetic variants to the            

models as additional perturbations, and propose optimal, personalized combinations of          

targeted therapeutics. We envision this systems biology approach to be broadly           
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applicable to other areas of biology, such as developmental biology or synthetic biology,             

provided that suitable perturbation-response data becomes available. Key future         

challenges are therefore the design of experiments for each biological context of            

interest and the further development of transferable and scalable machine learning           

methods. 

Methods 

Perturbation dataset overview 

The Cellbox models were trained using a perturbation-response dataset of the           

SK-Mel-133 melanoma cell line​19​. The cells were treated with 12 different single drugs             

each at two different concentrations and 66 pairwise combinations of these drugs at             

IC40 concentrations. 24 hours after drug treatment, Reverse Phase Protein Arrays           

(RPPA) were used to measure the level of 45 proteins and 37 phosphoproteins of              

interest. Cell cycle progression, including G1 arrest, G2 arrest, G2/M transition, and S             

arrest was measured by flow cytometry. Cell viability was measured 72 hours after drug              

treatment by the resazurin assay. The dataset was initialized with 12 drug activity nodes              

representing the inhibition strengths of different drugs to their targets​59​. The resultant            

dataset has 89 perturbation conditions and 99 observed nodes. A more detailed            

description of the experimental data set is available in Korkut et al​19​. 

  

Model configuration 

The models were constructed using Python 3.6 and Google Tensorflow (version = 1.9.0,             

https://www.tensorflow.org/about/bib​). The molecular and phenotypic changes are       

linked in a unified biological network model using a system of ordinary differential             

equations 
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 (1) 

 

where represents the log​2​-normalized relative change of each (phospho)protein (t) xi 
μ          

or phenotype levels relative to control levels under condition . quantifies the         μ  (t)uiμ    

strength of the perturbation on target (i). Here the drug effect is assumed to be constant                

and therefore for . characterizes the effect of decay, meaning the  (t)u = u   t > t0  αi        

tendency of protein to return to the original level before perturbation. The interaction   i            

parameters indicate interactions between network node on network node , wij       j     i  

assumed to be a constant property of the pair of molecules in this given cellular setting.                

We constrain the interaction parameters  by disallowing three classes of interactions:wij  

i) ingoing connections for drug nodes (drugs cannot be acted upon by any other node) 

ii) outgoing connections for phenotypic nodes (phenotypes cannot act on any other            

nodes) 

iii) self-interaction (nodes cannot act on themselves) 

We use a sigmoid function , to model the saturation effect of the interaction     (·) anh(·)  ϕ = t          

term so that it is bounded by the value of .εi  

(2) 

 

The biological network interactions are constructed ​de novo ​without any prior 

knowledge input. The interaction parameters were randomly initialized and the ODE 

system was numerically solved using Heun’s method (eqn. 2, time steps ,00N t = 4  
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supplementary Figure S1), which is an improved variant of Euler’s method. Model 

performance was evaluated by disagreement between the experimental cell responses 

and the numerical steady state levels. 

 

The loss function is defined as a weighted sum of prediction error and complexity   (w)L             

penalty in order to avoid overfitting. Here a mean squared error (MSE) and an L1-loss               

regularization term are used, as defined in (3). The interaction parameters were            

optimized end-to-end using the Adam optimizer​44​, with the objective of minimizing the            

loss function.  

is calculated as the converged value of the numerical simulation of the ODE withxiμˆ                

defined simulation timestep . The dataset was divided into training, validation, and   N t          

test sets, in order to optimize parameters, provide an indication for stopping training,             

and for testing model performance, respectively. Optimization was conducted with an           

initial learning rate for the Adam optimizer (lr=0.1) and regularization strength ( =0.01).           λ  

It has been shown that gradually decreasing learning rate is helpful for model             

convergence​57​. The model training was stopped when the loss function of the validation             

set does not further decrease for a continuous of 20 iterations (stopping patience).  

The model was trained with mini-batching: a random 80% portion of the training set was               

used to optimize parameters for each iteration. Models that failed to converge (MSE for              

training set > 0.05) were excluded as unsuitable. 

 

Model training with random data partitions 

For initial model training and analysis of model performance, the cell line            

perturbation-response dataset was randomly partitioned into training, validation, and         

test set in the proportion of 56% (n=50 conditions), 14% (n=12 conditions), and 30%              
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(n=27 conditions). 1500 models were generated on 1500 independently         

random-partitioned datasets. 

  

The models were examined and categorized into non-oscillating and oscillating          

solutions based on time derivatives at the final time step of the ODE simulation. The               

non-oscillating solutions are defined as those with the average absolute value of time             

derivatives of all nodes and conditions in the training set smaller than , i.e.            δ   

; . In each category, twenty models were randomly selected|1
m ∑

m

i=1
| ∂t
∂x (t)i

μ
< δ e 3δ = 1 − 0          

and each re-trained with the original data partitioning but forty different random seeds,             

covering all the random processes in the training, including parameter initialization and            

mini-batching sampling (Figure S2). Oscillating solutions comprise about 30 percent of           

all models. In the following analysis, models that converged to oscillating solutions were             

excluded. 

  

Single-to-combo and leave-one-drug-out cross validation 

To evaluate model performance by cross-validation for each drug, the data was            

partitioned into training (n=78 conditions) and test (n=11 conditions) sets where each            

test set contains all the drug combination conditions with the particular drug. 20% of              

training conditions (n=15) are used as a validation set. The predictions on the test set               

were averaged over 100 models. In the single-to-combo task, all single-drug conditions            

were allocated to the training set (n=23 conditions), and the combination perturbation            

conditions were randomly distributed among the validation and test set (n=53           

conditions) in a 20/80 ratio. 

 

The Belief Propagation (BP) models for both cross-validation and single-to-combo          

prediction were performed as in our earlier publication        

(​https://github.com/korkutlab/pertbio​). The predictions on the test set were averaged         

over 100 models. The deep neural network model (NN) parameter optimization with a             

similar number of parameters (hidden layer H1: 20 neurons, H2: 100 neurons) was             
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constructed in the Tensorflow framework in Python and optimized using the same            

optimization methods (Adam optimizer). The NN network had 5 hidden layers which            

each consists of 50 neurons and are densely connected, connecting the parameterized            

perturbation tensor with the cell response tensor. The co-expression static model           

(Co-exp) was constructed in a python environment using the sklearn (version = 0.21.3,             

https://scikit-learn.org/stable/​) LinearRegression module. The model was trained to use         

the changes in levels of each pair of protein nodes to predict the rest of the proteins and                  

phenotypes. To compare the four different predictive models, Cellbox, BP, NN, and            

Co-exp, a t-test on two related samples was used to analyze the significance of the               

difference of model predictions and to assign a p-value.  

 

Sensitivity analysis with noise and reduced training set size 

We conducted a sensitivity analysis of our model to evaluate the robustness of its              

prediction in response to noise. We added varying levels of Gaussian noise to the input               

molecular and phenotypic data (eqn. 4). 

(4) 

The scaling factor for each node and each condition was independently drawn from a              

Gaussian distribution , with a mean of 1 and standard deviation of . For each  (1, )N σ           σ    

noise level, we evaluated 15 different training/validation/test partitioning and each with 5            

independent random noise patterns. Model training was performed on noisy training and            

validation sets, while the model performance evaluation was performed on the original,            

noise-free test data. For each noise level, the percentage of successful models, defined             

as those that converged in terms of both MSE and oscillation filters, was recorded. 

  

We examined model sensitivity to training and validation set size. We reduced the             

combined size of the training and validation set, from 90% to 10% in steps of 10%, while                 

keeping their relative size constant, 4:1. The remaining data was allocated to the test              
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set. For each training set size, the percentage of successful models, defined as those              

that converged in terms of both MSE and oscillation filters, was reported. 

 

Biological interpretation of the network model 

The entire dataset was used to generate 1000 full successful models, each with an              

independent data partitioning of training (n=71 conditions) and validation (n=18          

conditions). For each interaction ( ) between two nodes, a t-score ( ), was    wij       x̄
s√m

  

calculated as an indication of the confidence level of obtaining a value different from              

zero, where is the average interaction strength across models, is the standard  x̄         s     

deviation,  is the number of models (m = 1,000).m  

 

In order to compare the model inferred interactions to those present in prior-knowledge             

pathway databases, all the proteins and phosphoproteins nodes were identified by their            

corresponding gene names (Supplementary Table S2). The interactions were compared          

against the Pathway Commons database (current version at        

https://www.pathwaycommons.org/archives/PC2/v11​) using the paxtoolsr​60 software.     

The database was filtered down to direct interactions, which include “controls           

expression of”, “controls phosphorylation of”, “controls state change of”, “controls          

production of”, “controls transport of”, and “controls transport of chemical”. The           

remaining direct interactions were converted to a directed graph using igraph (version =             

1.2.4.1, ​https://igraph.org/r/​). An interaction was considered “direct” if there was at least            

one direct connection between two genes in the PC graph, regardless of the interaction              

type. The interaction was considered “indirect” if there exists a directed path between             

two genes, with one or more intermediate genes along the path.  

 

Model predictions for a large number of unseen perturbations 

We used the models trained with the full (non-partitioned) dataset to simulate responses             

of novel, experimentally unobserved, in silico perturbation conditions. These conditions          

included different doses of single perturbations (different levels of perturbation strength           
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on all individual (phospho)protein and drug activity nodes within the network ∈ [0, ]u 3            

and as well as all pairwise combinations ( conditions). The       4 57, 20nall = 9 × 6 + C2
94 = 1 9   

cell responses were dynamically simulated with u as the input perturbation with the             

same number of steps as in training ( ). For each perturbation condition,       00N t = 4      

predictions for cell responses were averaged across 1,000 different models.          

Perturbations were nominated as therapeutic candidates by ranking the predicted          

magnitude of the phenotypic change in terms of cell cycle arrest.  

 

Code and data availability 

Cellbox code and data are available at ​https://github.com/dfci/CellBox​. 
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Supplementary materials 

During the training of each model, the training loss decreased along training time             

together with the test loss (Stage 1). The model parameters started to fluctuate around              

a local optimum after N = 2,000 training iterations. It has been shown that a decreasing                

learning rate is helpful for model convergence​57​. Decreasing the learning rate to 0.1x             

allowed the model to escape local minima and continue learning (Stage 2). The loss              

function stopped decreasing again after (up to) N = 4,000 iterations, when the             

magnitude of the MSE loss was comparable to that of the regularization loss. To further               

improve training and decrease MSE loss mainly, we decreased the regularization           

strength by loosening the L1 constraints on the parameters (Stage 3). MSE decreased             

further while the numerical range of the parameters (interaction strengths) started to            

increase. Continuous decreasing of the learning rate did not further change the loss             

(Stage 4). ODE simulation of the model indicated that a steady state had not been fully                

reached. Therefore, ODE simulation time was doubled twice (Stage 5 and Stage 6)             

while the learning rate and regularization were kept the same as Stage 4. The training               

and testing loss together with the ODE trajectory indicated that, at the final stage, the               

models had converged, optimization made no further improvements, and the ODE           

simulation has reached a steady state. We then stopped the training and examined the              

results closely on the test dataset. 

 

Figure S1 Multi-step fine-tuning of hyperparameters facilitates model training.  

Models were trained in six individual stages with varying learning rate, regularization            

strength, and ODE simulation time. As the training proceeds, 1. the distribution of             

differences between predicted and experimental values in the test set narrowed around            

zero; 2. the distribution of interaction strengths widened as the L1 regularization was             

weakened; 3. both the training and test loss decreased; 4. ODE simulation reached             

steady state as simulation time increased (Supplementary Note 1). 

 

32 

https://paperpile.com/c/p08Dad/jQwi


 

 

 
 

  

33 



 

 

Figure S2. Oscillatory models from stochastic training are independent of data           
partitioning. 

a.​ Models were examined and categorized into non-oscillatory and oscillatory solutions 

based on the ODE simulation trajectories. ​b-d. ​For each data partitioning of training and 

test set (row) in the two categories, different seeds for random processes in the training 

(column) were used to re-train the models and the models were examined for their 

performance in terms of average derivatives of each variable at the end of the ODE 

simulation (​b​), average mean squared error of the training set (​c​), and Pearson’s 

correlation between prediction and experimental data (​d​). For all the three features, the 

differences of the distribution patterns between the two categories are insignificant, 

indicating that the oscillating models are numerically correct solutions rather than 

artifacts of data partitioning.  
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Figure S3. Correlations between predicted and experimental data were         
consistently high across different perturbation conditions. 

a. ​Model prediction and experimental data had a similar range and distribution without             

skewing and extreme predictions. ​b​. In addition to overall performance, the model            

predictions for each perturbation condition were examined. The prediction of cell           

response under each individual condition reached a similar high correlation (median           

Pearson’s correlation 0.95) with experimental data. Meshes indicate the range of real            

data. Models generally performed better for conditions with larger data range.  
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Figure S4. Model convergence against noise and reduced training set 

a. The percentage of models that successfully converged, defined by MSE of training             

set below a threshold of 0.05, decreased as increased level of noise was added into               

training data. ​b. The percentage of successful models stayed the same as moref data              

was used for model training.  

  

37 



 

 

Supplementary Tables 

Table S1. Annotation of nodes in the network.  

Table S2. Information of all interactions from full network models 
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