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Abstract 23 

T cell epitope candidates are commonly identified using computational prediction 24 

tools in order to enable applications such as vaccine design, cancer neoantigen 25 

identification, development of diagnostics and removal of unwanted immune responses 26 

against protein therapeutics. Most T cell epitope prediction tools are based on machine 27 

learning algorithms trained on MHC binding or naturally processed MHC ligand elution 28 

data. The ability of currently available tools to predict T cell epitopes has not been 29 

comprehensively evaluated. In this study, we used a recently published dataset that 30 

systematically defined T cell epitopes recognized in vaccinia virus (VACV) infected 31 

mice, considering both peptides predicted to bind MHC or experimentally eluted from 32 

infected cells, making this the most comprehensive dataset of T cell epitopes mapped in 33 

a complex pathogen. We evaluated the performance of all currently publicly available 34 

computational T cell epitope prediction tools to identify these major epitopes from all 35 

peptides encoded in the VACV proteome. We found that all methods were able to 36 

improve epitope identification above random, with the best performance achieved by 37 

neural network-based predictions trained on both MHC binding and MHC ligand elution 38 

data (NetMHCPan-4.0 and MHCFlurry). Impressively, these methods were able to 39 

capture more than half of the major epitopes in the top 0.04% (N = 277) of peptides in 40 

the VACV proteome (N = 767,788). These performance metrics provide guidance for 41 

immunologists as to which prediction methods to use. In addition, this benchmark was 42 

implemented in an open and easy to reproduce format, providing developers with a 43 

framework for future comparisons against new tools. 44 

 45 
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Author summary 46 

Computational prediction tools are used to screen peptides to identify potential T 47 

cell epitope candidates. These tools, developed using machine learning methods, save 48 

time and resources in many immunological studies including vaccine discovery and 49 

cancer neoantigen identification. In addition to the already existing methods several 50 

epitope prediction tools are being developed these days but they lack a comprehensive 51 

and uniform evaluation to see which method performs best. In this study we did a 52 

comprehensive evaluation of publicly accessible MHC I restricted T cell epitope 53 

prediction tools using a recently published dataset of Vaccinia virus epitopes. We found 54 

that methods based on artificial neural network architecture and trained on both MHC 55 

binding and ligand elution data showed very high performance (NetMHCPan-4.0 and 56 

MHCFlurry). This benchmark analysis will help immunologists to choose the right 57 

prediction method for their desired work and will also serve as a framework for tool 58 

developers to evaluate new prediction methods. 59 

 60 

1. Introduction 61 

 62 

T cell epitope identification is important in many immunological applications including 63 

development of vaccines and diagnostics in infectious, allergic and autoimmune 64 

diseases, removal of unwanted immune responses against protein therapeutics and in 65 

cancer immunotherapy. Computational T cell epitope prediction tools can help to reduce 66 

the time and resources needed for epitope identification projects by narrowing down the 67 

peptide repertoire that needs to be experimentally tested. Most epitope prediction tools 68 
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are developed using machine learning algorithms trained on two types of experimental 69 

data:  binding affinities of peptides to specific MHC molecules generated using MHC 70 

binding assays, or sets of naturally processed MHC ligands found by eluting peptides 71 

from MHC molecules on the cell surface and identifying them by mass spectrometry. 72 

Since the first computational epitope prediction methods were introduced more than two 73 

decades ago [1–3], advancement in machine learning methods and increases in the 74 

availability of training data have improved the performance of these methods 75 

significantly in recent years, as has been demonstrated on benchmarks of MHC binding 76 

data [4,5]. 77 

 78 

Given the wealth of epitope prediction methods available, it is necessary to keep 79 

comparing the performance of the different methods against each other, in order to 80 

allow users to rationally decide which methods to choose, and to allow developers to 81 

understand what changes can truly improve prediction performance. One issue with the 82 

past evaluations has been that, when new methods are developed and tested, they are 83 

commonly evaluated using the same kind of data on which they were trained, which can 84 

impact the performance results. For example, a method trained using MHC binding data 85 

will tend to show better performance when it is evaluated using MHC binding data and a 86 

method trained using MHC ligand elution data will tend to perform better when 87 

evaluated using MHC ligand data. The ultimate aim of the epitope prediction methods is 88 

to predict actual T cell epitopes i.e. peptides that are recognized by T cells in the host. 89 

Thus, we believe that the best way to compare prediction methods trained on different 90 

data is to evaluate their performance in identifying epitopes.  91 
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 92 

One problem when using T cell epitope identification as a way to benchmark prediction 93 

methods is that it is typically not known what a true negative is, as only a subset of 94 

epitope candidates is commonly tested for T cell recognition experimentally. Here, we 95 

took advantage of a recent study that comprehensively identified T cell responses in 96 

C57BL/6 mice infected with Vaccinia virus (VACV) [6]. This dataset is unique in that it 97 

covered all peptides previously shown to be presented by either H-2Db or H-2Kb 98 

molecules expressed in these mice, which included epitopes identified following a large-99 

scale screen of predicted peptide ligands [7], as well as all epitopes recognized in a 100 

comprehensive screen of a VACV protein expression library [8], and all peptides found 101 

to be naturally processed and presented by MHC ligand elution assays using mass 102 

spectrometry [6]. All these epitope candidates were rescreened in a consistent format, 103 

using eight separately infected mice, defining the major epitopes (categorized as those 104 

recognized in more than half of the animals), as well as negatives (never recognized in 105 

any animal), and for each epitope defining the magnitude of the T cell response.  106 

 107 

We retrieved predictions from all publicly available computational algorithms prior to 108 

release of the dataset. We next evaluated each prediction algorithm based on its ability 109 

to pick the major epitopes from within the total peptides that can be derived from VACV, 110 

using different metrics such as AUC (area under the ROC curve), number of peptides 111 

needed to capture different fractions of the epitopes, number of epitopes captured in the 112 

top set of predicted peptides, and the magnitude of T cell response accounted for at 113 

different thresholds.  114 
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 115 

2. Materials & Methods 116 

 117 

2.1 Selection of methods  118 

 119 

As a first step, we compiled a list of all freely available CD8+ T cell epitope prediction 120 

methods by querying Google and Google Scholar. We identified 44 methods (S1 Table) 121 

that had executable algorithms freely available publicly (excluding those that required us 122 

to train a prediction model), and excluding commercial prediction tools that required us 123 

to obtain licenses. Out of these 44 methods, we selected those that had trained models 124 

available for the two mouse alleles for which we had benchmarking data (H-2Db & H-125 

2Kb). Further, we contacted the authors of the selected methods and excluded the ones 126 

that the authors explicitly wanted to be excluded from the benchmarking for different 127 

reasons (mostly because the methods were not updated recently or new version of the 128 

methods were to be released soon). The final list included 15 methods that were 129 

selected to be included in the benchmarking: ARB [9], BIMAS [2], IEDB Consensus [7], 130 

MHCflurry [10], MHCLovac [11], NetMHC-4.0 [12], NetMHCpan-3.0 [13], NetMHCpan-131 

4.0 [14], PAComplex [15], PREDEP [16], ProPred1 [17], Rankpep [18], SMM [19], 132 

SMMPMBEC [20], SYFPEITHI [3]. Out of the 15 methods, NetMHCpan-4.0 offered two 133 

different outputs, the first one being the predicted binding affinity of a peptide (referred 134 

as NetMHCpan-4.0-B), and the second the predicted probability of a peptide being a 135 

ligand in terms of a probability score (NetMHCpan-4.0-L). Both these outputs were 136 

evaluated separately. Similarly, MHCflurry could use two different models, first one 137 
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trained with only binding data (MHCflurry-B) and second one incorporating data on 138 

peptides identified by mass-spectrometry (MHCflurry-L). Both these models were 139 

evaluated separately. Considering these as separate methods, a total of 17 methods 140 

were included in the benchmark, and are described in more detail in S1 Table. The 141 

methods differed widely in the peptide lengths that they could predict for each allele. For 142 

example, while MHCLovac could predict lengths 7-13 for both alleles, PAComplex could 143 

predict for only 8-mers of H-2Kb and none of the lengths in case of H-2Db. The methods 144 

also differed in the kind of prediction scores provided but ultimately they all represented 145 

a score that was intended to correlate with the probability of a peptide being an epitope 146 

in the context of the given MHC molecule. A complete list of the peptide lengths allowed 147 

for prediction per allele by each method and the kind of prediction scores they provide 148 

are given in S2 Table. 149 

 150 

2.2 Dataset of VACV peptides 151 

 152 

For the benchmark analysis, we used the peptide data set described in Croft et al., 2019  153 

(S3 Table). This dataset represented a comprehensive set of peptides naturally 154 

processed and eluted from VACV-infected cells in addition to any previously identified 155 

epitopes. The total of  220 VACV peptides were tested for T cell immune responses in 156 

infected mice. Of these peptides, 172 were eluted from H-2Db and Kb molecules from 157 

VACV-infected cells  as described in detail in Croft et al., 2019. In brief, DC2.4 cells 158 

(derived from C57BL/6 mice [21] that expressed H-2b MHC molecules were infected 159 

with VACV. The H-2Db and Kb molecules were then individually isolated and the bound 160 
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peptides eluted. The peptides were then analyzed by high resolution liquid 161 

chromatography-tandem mass spectrometry (LC-MS/MS). The remaining peptides in 162 

the set were not detected by LC-MS/MS and included 46 VACV-derived H-2b restricted 163 

peptides/epitopes from the IEDB [22] and one entirely unpublished epitope and another 164 

that was mapped from a longer published sequence [23] identified by the Tscharke 165 

laboratory. Immune reactivity for each of these 220 peptides was then tested 8 times 166 

and the peptides that tested positive more than four times were classified as “major 167 

epitopes” and those tested positive four or fewer times were classified as “minor 168 

epitopes”. All peptides that were never positive were classified as “nonimmunogenic”. 169 

There were 83 peptides classified as “major” positives (S3 Table), ranging in lengths 7-170 

13. In addition to the 220 peptides tested for immunogenicity, we generated all possible 171 

peptides of lengths 7-13 from the VACV reference proteome 172 

(https://www.uniprot.org/proteomes/UP000000344) (S4 File), which were also 173 

considered non-immunogenic, based on them not being found in elution assays on 174 

infected cells, and not being found positive in any of the many studies recorded in the 175 

IEDB. The entire dataset comprised 767,788 peptide/allele combinations. 176 

 177 

2.3 Performance evaluations 178 

 179 

The performance of the prediction methods was evaluated mainly by generating ROC 180 

curves (Receiver operating characteristic curve) and calculating the AUCROC (Area 181 

under the curve of ROC curve). The ROC curve shows the performance of a prediction 182 

model by plotting the True positive rate (TPR, fraction of true positives out of the all real 183 

https://www.uniprot.org/proteomes/UP000000344
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positives) against the False positive rate (FPR, fraction of false positives out of the all 184 

real negatives) as the threshold of the predicted score is varied. AUCROC is the area 185 

under the ROC curve which summarizes the curve information and acts as a single 186 

value representing the performance of the classifier system. A predictor whose 187 

prediction is equivalent to random will have an AUC = 0.5 whereas a perfect predictor 188 

will have AUC = 1.0. That is, the closer the AUC is to 1.0, the better the prediction 189 

method. AUC values were first calculated on different sets of peptides grouped by 190 

length and allele separately. Secondly, overall AUCs were calculated by taking peptides 191 

of all lengths and both alleles together, which reflects the real life usability of having to 192 

decide which peptides to test. In this calculation, poor scores were assigned to peptides 193 

of lengths where predictions were not available for a given method. For example, in the 194 

case of SMM, lower numerical values of the prediction score indicate better epitope 195 

candidates, with scores ranging from 0 to 100. So a score of 999 was assigned to all 196 

peptides of lengths for which predictions were not available in SMM (lengths 7, 12 and 197 

13 for both alleles). Similarly a score of -100 was assigned in case of SYFPEITHI (H-198 

2Db: 7-8, 11-13; H-2Kb:  7, 9-13) where a higher numerical value of predicted score 199 

indicates better epitope candidate and the scores ranging from -4 to 32. 200 

 201 

2.4 Fully automated pipeline to generate benchmarking metrics 202 

 203 

The Python scikit-learn package [24] was used for calculating the AUCs and Python 204 

matplotlib package [25] was used for plotting. A python script that can generate all 205 

results and plots along with the input file containing all peptides and their prediction 206 
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scores from each method, immunogenicity category, T cell response scores, the 207 

"ProteinPilot confidence scores" representing the mass-spectrometry (MS) identification 208 

confidence level of the peptides and the number of times the peptides were identified by 209 

MS are provided in the GitLab repository (https://gitlab.com/iedb-tools/cd8-t-cell-210 

epitope-prediction-benchmarking). The repository also contains the outputs from the 211 

script, i.e. the relevant results and plots. This will enable interested users to check our 212 

results and add their own prediction algorithms.  213 

 214 

3. Results 215 

3.1 Performance of the methods based on AUCROC 216 

 217 

As described in the method section, we identified 17 distinct prediction approaches that 218 

were freely accessible and could be applied to our dataset. Predictions from these 219 

methods were retrieved for all peptides of lengths 7-13 in the VACV proteome, which 220 

included the peptides tested for T cell response in Croft et al. (2019) [6]. The predictions 221 

were done using default parameters and the prediction outputs were used as provided 222 

by the tools without any modification or optimization. For tools provided by DTU server 223 

(NetMHCpan, NetMHC) and IEDB (Consensus, SMM, SMMPMBEC, ARB), where it 224 

provides raw score (for example predicted absolute binding affinity) and the percentile 225 

ranks (predicted relative binding affinity), the percentile ranks were used in the analysis. 226 

We considered the “major epitopes” (peptides that were tested positive in more than 227 

four out of the eight mice) as positives. To avoid ambiguity we excluded the “minor 228 

epitopes” (peptides that were tested positive in four or less mice out of the eight), and all 229 

https://gitlab.com/iedb-tools/cd8-t-cell-epitope-prediction-benchmarking
https://gitlab.com/iedb-tools/cd8-t-cell-epitope-prediction-benchmarking


 

11 
 

other peptides were considered as negatives. This provides a binary classification of 230 

peptides into epitopes/non-epitopes. In order to evaluate the performance of each 231 

prediction approach, we generated ROC curves and calculated the AUCROC for all 232 

methods on a per allele (H-2Db, H-2Kb) and per peptide length (7-13) basis, which are 233 

listed in Table 1. The per allele/length AUCs were then averaged to get an AUC value 234 

per each allele for each method and then the AUCs of both alleles were averaged to get 235 

a single AUC value per method. These average AUC values for each method are also 236 

provided in Table 1. The average AUCs varied from 0.793 to 0.983. NetMHCpan-4.0-B 237 

came top based on this analysis with an average AUC of 0.983. It was followed by 238 

NetMHCpan-3.0 (AUC = 0.982) and NetMHC-4.0 (AUC = 0.980). The lowest AUC was 239 

obtained for MHCLovac (0.793). When looking at the individual AUC values for each 240 

length, it was noticed that MHCLovac had very low performance for H-2Kb lengths 7 and 241 

12 (AUC of 0.529 and 0.284 respectively) where there were only one positive each. 242 

Thus, these two low AUCs brought the average AUC down for MHCLovac, which is 243 

arguably irrelevant, as there are very few peptides positive for those lengths in the first 244 

place.  245 

 246 

In practical applications, an experimental investigator uses predictions to choose which 247 

peptides to synthesize and test. The total number of peptides to be synthesized and 248 

tested is the limiting factor, and how many of the epitopes are covered is a measure of 249 

success, regardless of what the peptide length is or what allele they are restricted by. 250 

To reflect this, we estimated overall AUC values for each method by considering 251 

peptides of all lengths and both alleles together. If a given prediction method was 252 

https://docs.google.com/spreadsheets/d/1Y3rj_jcnvecO1v2bGeUdfFZ-bdXJj2oaiLNHLM8tU2U/edit#gid=304633764&range=A1
https://docs.google.com/spreadsheets/d/1Y3rj_jcnvecO1v2bGeUdfFZ-bdXJj2oaiLNHLM8tU2U/edit#gid=304633764&range=A1
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unable to make predictions for a certain length (reflecting that the length is not 253 

considered likely to be an epitope), uniformly poor scores were assigned to those 254 

peptides. The overall AUCs ranged from 0.642 to 0.977. NetMHCpan-4.0-L ranked first 255 

with with AUC of 0.977 followed by NetMHCpan-4.0-B (0.975) and MHCflurry-L (0.973) 256 

(Table 1, Fig 1A). The ROC curves are shown in Fig 2. Fig 2A shows the ROC curves of 257 

all benchmarked methods for 100% FPR and Fig 2B shows the same up to 2% FPR to 258 

clearly distinguish the curves for each method in the initial part. Fig 2C and 2D show 259 

respectively the same for a set of top and historically important methods. It has to be 260 

noted that certain methods such as NetMHCpan-4.0 are implicitly adjusting prediction 261 

scores to account for the fact that certain peptide sizes are preferred when natural 262 

ligands are considered, as these methods were trained on such ligands. This means 263 

that prior approaches to adjust for the prevalence of different peptide lengths as was 264 

done for NetMHCPan 2.8 [26] are no longer necessary for such modern methods. It is 265 

likely that other methods, such as BIMAS or SMM that were trained on binding data 266 

only, could be improved when adjusting for lengths, but we wanted to test the 267 

performance of each method on an as-is basis.  268 

 269 

Fig 1. Bar charts showing the overall AUCs for each benchmarked method. 270 

Fig 1A. Bar chart showing the overall AUCs for each method with a binary classification 271 

(epitope/non-epitope) based analysis 272 

 273 

Fig 2. ROC curves showing the performance of the benchmarked methods. The 274 

curves are made by plotting true positive rate against the false positive rate in case of 275 
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binary classification (epitopes/non-epitopes) based analysis and by plotting the % of T 276 

cell response against % of total peptides in case of T cell response based analysis. 277 

Fig 2A. ROC curve for all methods that were benchmarked. 278 

Fig 2B. ROC curve for all methods that were benchmarked with the curves zoomed in to 279 

FPR = 0.02 in order to be able to distinguish them more clearly in this region. 280 

Fig 2C. ROC curve showing the performance of a set of top and historically important 281 

methods. 282 

Fig 2D. ROC curve for selected methods with the curves zoomed in to FPR = 0.02. 283 

 284 

Table 1. AUCs showing performance of each benchmarked method.   285 
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Method 

Binary classification (epitope/non-epitope) based 
T cell response 

based 

H2-Db H2-Kb Averag
e of 

length
wise 
AUCs 

for 
both 

alleles 

Overall 
AUC 

with all 
lengths 

and 
both 

alleles 
togethe

r 

Rank 

Overall 
AUC 

with all 
lengths 

and both 
alleles 

together 

Rank 
7 8 9 10 11 12 13 

Averag
e of 

length
wise 
AUCs 

7 8 9 10 11 12 13 

Avera
ge of 
lengt
hwise 
AUCs 

NetMHCpan-4.0-L* - 0.923 0.986 0.884 0.997 1.000 1.000 0.965 - 0.990 0.988 0.999 - 1.000 - 0.994 0.979 0.977 1 0.979 1 

NetMHCpan-4.0-B* - 0.943 0.990 0.912 0.994 1.000 1.000 0.973 - 0.989 0.989 0.996 - 0.999 - 0.993 0.983 0.975 2 0.978 2 

MHCflurry-L** - 0.897 0.984 0.902 0.986 0.997 1.000 0.961 - 0.995 0.989 0.985 - 1.000 - 0.992 0.976 0.973 3 0.977 3 

MHCflurry-B** - 0.923 0.983 0.897 0.981 0.998 0.999 0.964 - 0.994 0.988 0.990 - 0.999 - 0.993 0.978 0.972 4 0.976 4 

NetMHCpan-3.0 - 0.955 0.989 0.900 0.996 0.999 0.999 0.973 - 0.988 0.986 0.996 - 0.999 - 0.992 0.982 0.972 5 0.975 5 

NetMHC-4.0 - 0.945 0.990 0.902 0.995 1.000 0.998 0.972 - 0.989 0.981 0.990 - 0.994 - 0.989 0.980 0.969 6 0.974 6 

IEDB Consensus - 0.813 0.991 0.879 0.870 1.000 0.998 0.925 - 0.988 0.977 0.993 - 0.994 - 0.988 0.957 0.960 7 0.961 7 

SMMPMBEC - 0.498 0.988 0.924 0.733 - - 0.786 - 0.986 0.971 0.977 - - - 0.978 0.882 0.938 8 0.940 8 

SMM - 0.490 0.989 0.864 0.687 - - 0.757 - 0.984 0.969 0.979 - - - 0.977 0.867 0.935 9 0.938 10 

ARB - 0.623 0.988 0.862 0.916 - - 0.847 - 0.978 0.981 0.927 - - - 0.962 0.905 0.928 10 0.939 9 

Rankpep - 0.629 0.991 0.923 0.908 - - 0.863 - 0.986 0.819 - - - - 0.903 0.883 0.927 11 0.894 12 

BIMAS - - 0.981 0.886 - - - 0.933 - 0.968 0.868 0.990 - - - 0.942 0.938 0.909 12 0.918 11 

MHCLovac - 0.887 0.949 0.942 0.987 0.987 0.993 0.957 0.529 0.876 0.723 0.728 - 0.284 - 0.628 0.793 0.878 13 0.863 13 

SYFPEITHI - - 0.988 0.891 - - - 0.939 - 0.983 - - - - - 0.983 0.961 0.813 14 0.778 14 

PREDEP - - 0.781 - - - - 0.781 - 0.844 - - - - - 0.844 0.813 0.770 15 0.737 15 

ProPred-I - - 0.981 - - - - 0.981 - - 0.869 - - - - 0.869 0.925 0.687 16 0.651 17 

PAComplex - - - - - - - - - 0.902 - - - - - 0.902 0.902 0.642 17 0.652 16 

 286 

The table shows the AUCs for each method on a per allele/length basis where allele/lengths are available and the average AUCs 287 

per method per alleles derived from the lengthwise AUCs. The overall AUCs show the AUCs calculated with all lengths and both 288 
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alleles taken together for each method and these values are used to rank the performance of the methods. Additionally, the AUCs 289 

derived based on the T cell response obtained for each peptide/allele combination are also shown. 290 

*NetMHCpan-4.0: B - using binding based prediction; L - using ligand based prediction 291 

**MHCflurry: B - models trained on binding affinity measurements; L - Mass-spec datasets incorporated 292 
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3.2 Alternative metrics to evaluate performance of the methods 293 

 294 

In addition to the AUCs, we calculated metrics that are more intuitive for scientists less 295 

familiar with ROC curves, namely the number of peptides needed to capture 50%, 75% 296 

and 90% of the epitopes (which corresponds to comparing ROC curves at horizontal 297 

lines at 50%, 75% and 90% sensitivity). Since a total of 83 major epitopes were found in 298 

the dataset, we calculated how many predicted peptides were needed to capture 42 (= 299 

50%) of them, after sorting based on the prediction score for each method. The results 300 

are shown in Table 2 and Fig 3A. The number of peptides required by the methods 301 

varied widely. NetMHCpan-4.0-L required only 0.036% (N = 277) peptides and 302 

MHCflurry-L needed only 0.037% (N = 285) peptides to capture 50% epitopes while 303 

ProPred1 needed 21% (160,644) and PAComplex needed 30% (230,132) peptides 304 

respectively to capture 50% epitopes. In a similar manner, we also calculated the 305 

number of peptides needed to capture 75% (N = 62) and 90% epitopes (N = 75). For 306 

75% epitopes, MHCflurry-B was on top with 0.20% peptides (N = 1,542) whereas 307 

PAComplex needed 65% peptides (N = 498,917) (Table 2, Fig 3B). For 90% epitopes 308 

NetMHCpan-4.0-B needed only 1.33% (N = 10,224) peptides and NetMHCpan-4.0-L 309 

required only 1.47% (11,254) peptides while ProPred1 and PAComplex needed 84% (N 310 

= 646,291) and 86% (660,189) peptides respectively (Table 2, Fig 3C). 311 

 312 

Similar to above, another metric we calculated was the number of epitopes captured in 313 

the top 172 peptides predicted by each method. This corresponds to the number of 314 

peptides identified by mass-spectrometry of naturally eluted ligands. The results are 315 
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provided in Table 3 and Fig 4A. The number of epitopes captured by these top peptides 316 

also varied widely for the methods. The MHCflurry methods performed the best, 317 

capturing 43% (N = 36) of the epitopes and NetMHCpan-4.0 methods captured 40% (N 318 

= 33) epitopes while PREDEP could not capture any epitope in the top 172 peptides. 319 

 320 

In addition to the analyses based on the binary classification of peptides (epitopes/non-321 

epitopes), we also evaluated the methods based on the T cell response generated by 322 

the peptides, measured as the percentage of IFNγ producing cells in CD8 T cells as a 323 

whole (S3 Table). First, we plotted the cumulative fraction of the T cell response 324 

accounted for by a given % of the total peptides considered and estimated the overall 325 

AUCs for each method with peptides of all lengths and both alleles taken together. 326 

Measuring the performance of the prediction methods based on the magnitude of the T 327 

cell response covered systematically gave slightly higher performances with overall 328 

AUCs ranging from 0.651 to 0.979 (Table 1, Fig 1B). The rankings however were 329 

essentially identical, with NetMHCpan-4.0-L again ranking first with an AUC of 0.979 330 

followed by NetMHCpan-4.0-B (0.978) and MHCflurry-L of (0.977). Fig 2E shows the 331 

the corresponding curves for 100% peptides and Fig 2F shows the same for 2% 332 

peptides. Similar to the analysis we did with epitopes, we also estimated the number of 333 

peptides needed to capture 50%, 75% and 90% of the T cell response.  The results 334 

were essentially same as that of the epitopes at the corresponding percentage levels 335 

with some minor exceptions (Table 2, Fig 3D-F). Similarly we also calculated the 336 

amount of T cell response captured in the top 172 peptides predicted by each method 337 
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(Table 3 and Fig 4B). Here NetMHCpan-4.0-B came top with 47.4% of the response 338 

and was closely followed by MHCflurry-B with 47.2% T cell response. 339 

 340 

Fig 1. Bar charts showing the overall AUCs for each benchmarked method. 341 

Fig 1B. Bar chart showing the overall AUCs for each method with a T cell response 342 

based analysis 343 

 344 

 345 

Fig 2. ROC curves showing the performance of the benchmarked methods. The 346 

curves are made by plotting true positive rate against the false positive rate in case of 347 

binary classification of peptides (epitopes/non-epitopes) based analysis and by plotting 348 

the % of T cell response against % of total peptides in case of T cell response based 349 

analysis. 350 

Fig 2E. Curve generated by plotting the % of T cell response against % of total 351 

peptides. 352 

Fig 2F. Curve generated by plotting the % of T cell response against % of total peptides. 353 

This plot shows the curves zoomed in to % of peptides = 0.02. 354 

 355 

Fig 3. Number of peptides needed to capture 50%, 75% asnd 90% epitopes and T 356 

cell response 357 

Fig 3A. Number of peptides needed to capture 50% epitopes. 358 

Fig 3B. Number of peptides needed to capture 75% epitopes. 359 

Fog 3C. Number of peptides needed to capture 90% epitopes. 360 
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Fig 3D. Number of peptides needed to capture 50% T cell response. 361 

Fog 3E. Number of peptides needed to capture 75% T cell response. 362 

Fog 3F. Number of peptides needed to capture 90% T cell response. 363 

 364 

Fig 4. Number of epitopes and the amount of T cell response captured in the top 365 

172 peptides. The number of top peptides was fixed at 172 to match the number of 366 

peptides identified by mass-spectrometry. 367 

Fig 4A. Number of epitopes captured in the top 172 peptides. 368 

Fig 4B. Amount of T cell response captured in the top 172 peptides. 369 

 370 

Table 2. Number of peptides needed to capture 50%, 75% and 90% of epitopes 371 

and T cell response 372 
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Method 

Peptides needed to capture 50% 

Method 

Peptides needed to capture 75% 

Method 

Peptides needed to capture 90% 

Epitopes T cell response Epitopes T cell response Epitopes T cell response 

Count % Count % Count % Count % Count % Count % 

NetMHCpan-4.0-L 277 0.04% 286 0.04% MHCflurry-B 1,542 0.20% 1,639 0.21% NetMHCpan-4.0-B 10,224 1.33% 8,030 1.05% 

MHCflurry-L 285 0.04% 230 0.03% MHCflurry-L 1,896 0.25% 1,991 0.26% NetMHCpan-4.0-L 11,254 1.47% 11,309 1.47% 

MHCflurry-B 307 0.04% 216 0.03% NetMHCpan-4.0-L 2,147 0.28% 1,549 0.20% MHCflurry-B 13,719 1.79% 13,842 1.80% 

NetMHCpan-4.0-B 349 0.05% 236 0.03% NetMHCpan-4.0-B 3,058 0.40% 2,250 0.29% MHCflurry-L 15,651 2.04% 16,039 2.09% 

NetMHC-4.0 365 0.05% 317 0.04% NetMHC-4.0 3,922 0.51% 3,037 0.40% NetMHCpan-3.0 27,731 3.61% 17,533 2.28% 

SMM 924 0.12% 761 0.10% IEDB Consensus 4,925 0.64% 4,877 0.64% NetMHC-4.0 30,472 3.97% 20,984 2.73% 

IEDB Consensus 1,163 0.15% 1,135 0.15% NetMHCpan-3.0 5,764 0.75% 5,341 0.70% IEDB Consensus 49,777 6.48% 44,516 5.80% 

Rankpep 1,251 0.16% 3,211 0.42% SMM 6,240 0.81% 5,493 0.72% SMMPMBEC 71,593 9.33% 91,619 11.93% 

NetMHCpan-3.0 1,309 0.17% 1,157 0.15% SMMPMBEC 7,939 1.03% 7,174 0.93% SMM 83,425 10.87% 84,821 11.05% 

SMMPMBEC 1,697 0.22% 1,214 0.16% Rankpep 16,218 2.11% 34,742 4.53% Rankpep 131,992 17.19% 399,634 52.05% 

ARB 1,781 0.23% 2,262 0.29% ARB 17,260 2.25% 13,791 1.80% ARB 152,456 19.86% 91,256 11.89% 

SYFPEITHI 2,070 0.27% 1,955 0.25% BIMAS 20,156 2.63% 17,264 2.25% MHCLovac 285,408 37.18% 312,869 40.75% 

BIMAS 4,466 0.58% 6,733 0.88% MHCLovac 138,245 18.01% 187,337 24.40% BIMAS 313,329 40.81% 166,819 21.73% 

PREDEP 30,363 3.96% 31,820 4.14% SYFPEITHI 267,557 34.85% 351,034 45.72% SYFPEITHI 567,644 73.94% 601,086 78.29% 

MHCLovac 34,218 4.46% 30,981 4.04% PREDEP 327,655 42.68% 388,964 50.66% PREDEP 591,684 77.07% 616,259 80.26% 

ProPred1 160,644 20.93% 221,775 28.89% ProPred1 464,173 60.46% 494,782 64.44% ProPred1 646,291 84.19% 658,585 85.78% 

PAComplex 230,132 29.98% 216,523 28.19% PAComplex 498,917 64.99% 492,155 64.10% PAComplex 660,189 86.00% 657,535 85.64% 

 373 

The table shows the number of peptides needed to capture 50%, 75% and 90% of epitopes and T cell response. The lower the 374 

number of peptides needed to capture the respective amount of epitopes or T cell response, the better the performance of the 375 

prediction method. 376 
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Table 3. Number of epitopes and amount of T cell response captured in the top 172 377 

peptides. 378 

Method 

Epitopes captured in 

top 172 peptides 

T cell response 

captured in top 172 

peptides 

Count % Count % 

MHCflurry-L 36 43.37% 24.92 44.36% 

MHCflurry-B 36 43.37% 26.51 47.18% 

NetMHCpan-4.0-B 33 40.00% 26.64 47.42% 

NetMHCpan-4.0-L 33 39.76% 22.7 40.40% 

NetMHC-4.0 31 36.86% 23.5 41.83% 

Rankpep 22 26.51% 11.1 19.75% 

SYFPEITHI 16 19.73% 9.43 16.78% 

ProPred1 13 15.66% 6.28 11.17% 

ARB 12 14.46% 7.32 13.04% 

BIMAS 11 13.25% 4.64 8.25% 

SMM 11 12.67% 7.65 13.61% 

NetMHCpan-3.0 10 12.11% 9.23 16.42% 

SMMPMBEC 7 8.72% 7.03 12.51% 

PAComplex 3 3.61% 4.1 7.30% 

IEDB Consensus 2 2.88% 1.93 3.43% 

MHCLovac 2 2.41% 1.51 2.69% 

PREDEP 0 0.00% 0 0.00% 

 379 

Number of epitopes and amount of T cell response captured in the top 172 peptides. 380 

The higher the number of epitopes or amount of T cell response captured, the better the 381 

performance of the prediction method. The number of top peptides was fixed at 172 382 

because that was the number of peptides identified by LC-MS/MS. 383 

 384 
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3.3 Comparing epitope identification by mass-spectrometry and epitope 385 

prediction 386 

 387 

Next, we wanted to determine how epitope candidates identified experimentally by 388 

mass-spectrometry (MS) should be ranked. In the dataset used, a single elution and 389 

identification of peptides by LC-MS/MS was done. Rather than treating the outcome of 390 

this MS experiment as a binary outcome (ligands being identified or not), we ranked the 391 

results based on confidence that the identified hits are accurate, and to test if that 392 

enables discriminating hits that turn out to be epitopes from others that do not. We 393 

compared the performance of three metrics derived from the MS experiment. First the 394 

ProteinPilot confidence score which is obtained from the software used in identification 395 

of peptides using MS; second, the number of times a peptide was identified in MS (i.e. 396 

spectral count); and third, a combined score derived by taking the product of the 397 

previous two (S3 Table). When evaluating these three approaches, we found that the 398 

number of times the peptide was identified by MS had the best performance with an 399 

AUC of 0.674 (AUC of combined score = 0.667, ProteinPilot = 0.503). This shows that 400 

the number of times a precursor ion was selected for MS/MS, which is a proxy for the 401 

abundance of a peptide, but not the ProteinPilot score, which is an indication of the 402 

certainty of the hit, has small but significant predictive power for a peptide to be an 403 

actual epitope (p = 0.0001).  404 

 405 

Using this score to rank the identified MS ligands, and assigning a score of 0 to all other 406 

peptides in the VACV peptide dataset, we could now generate ROC curves in the same 407 
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way as was done for the prediction approaches, and compare it to the best performing 408 

method NetMHCpan-4.0-L. Fig 5A shows the ROC curves for both MS-based and 409 

prediction based (NetMHCpan-4.0-L) approaches for 100% FPR and Fig 5B shows the 410 

ROC curves up to 2% FPR. The MS based curve had an AUC of 0.898 compared to 411 

AUC of 0.977 for NetMHCpan-4.0-L. At the same time, when evaluating how many 412 

peptides are needed to be synthesized to capture 50% of the epitopes, the ligand 413 

elution data by far outperforms all prediction methods, needing only 0.01% peptides (N 414 

= 48), with the best prediction method (NetMHCPan4L) needing 277 peptides. This 415 

suggests that, when the intent of a study is to identify all epitopes, and the number of 416 

peptides tested is a minor concern, predictions have a better performance, as some 417 

fraction of T cell epitopes will be missed in typical ligand-elution experiments. At the 418 

same time, when the intent is to identify a small pool of high confidence candidate 419 

peptides, MHC ligand elution experiments have a much better performance.  420 

 421 

Fig 5. ROC curves comparing epitope candidate selection using mass-422 

spectrometry and prediction approaches. The curves were generated from the 423 

number times a precursor ion was selected for MS/MS which acts as a proxy for the 424 

abundance of a peptide and represents MS  and NetMHCpan-4.0-L prediction scores. 425 

Fig 5A. ROC curves comparing epitope candidate selection using mass-spectrometry 426 

and prediction approaches. Plot showing 100% FPR. 427 

Fig 5B. ROC curves comparing epitope candidate selection using mass-spectrometry 428 

and prediction approaches. Plot showing up to 2% FPR. 429 

 430 
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3.4 Comparison of prediction speed 431 

 432 

As an independent measure of prediction performance, we wanted to compare the 433 

speed with which the different methods could provide their answers. As the initial 434 

gathering of predictions involved significant manual troubleshooting, we performed a 435 

dedicated speed test, using 5 random amino acid sequences that were 1000 residues 436 

long for both H-2Db and H-2Kb alleles, and for each method. We used the fastest 437 

available online versions of the methods for prediction, for example, RESTful API where 438 

available. For some methods, we were unable to quantify prediction times that could be 439 

meaningfully compared to the others, and these were excluded from this analysis (for 440 

example, MHCflurry server was having memory issues and we could not get the 441 

predictions done in a manner consistent with other methods). Out of the 10 methods 442 

that we could compare, BIMAS and SYFPEITHI were the fastest with 0.97 and 0.99 443 

seconds per sequence respectively (Fig 6A). On the other end, NetMHCpan-4.0 and 444 

NetMHCpan-3.0 were the slowest with average times of 8.53 and 6.30 seconds. We 445 

noticed that in general, matrix based methods (BIMAS, SYFPEITHI, RANKPEP, SMM, 446 

SMMPMBEC) were significantly faster compared to artificial neural network-based 447 

methods (NetMHCpan-4.0, NetMHCpan-3.0, NetMHC-4.0) on average (Fig 6B). The 448 

matrix-based methods took an average of 2.07 seconds while the neural network-based 449 

methods needed an average of 6.06 seconds per sequence, with the pan-based 450 

methods being particularly slow. This indicates a trade-off between prediction 451 

performance and speed. 452 

 453 
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Fig 6. Comparison of prediction speed among the some of the benchmarked 454 

methods. The plot shows the average time in seconds taken by the methods for doing 455 

epitope prediction for 1000 amino acid residue long sequence. 456 

Fig 6A. Comparison of prediction speed among individual methods 457 

Fig 6B. Comparison of prediction speed between matrix-based methods and artificial 458 

neural network-based methods 459 

 460 

4. Discussion 461 

 462 

In this study we comprehensively evaluated the ability of different prediction methods to 463 

identify T cell epitopes. We found that most of the latest methods perform at a very high 464 

level, especially the methods developed on artificial neural-network based architectures. 465 

In addition, we found that methods that integrated MHC binding and MHC ligand elution 466 

data performed better than those trained on MHC binding data alone. And where 467 

available, methods that provided two outputs, where one output predicted MHC ligands 468 

vs. another that predicted MHC binding, the MHC ligand output score performed better. 469 

Based on these results, the IEDB will be updating the default recommended prediction 470 

method to NetMHCPan-4.0-L.  471 

 472 

Our results highlight the value of integrating both MHC binding and MHC elution data 473 

into training prediction algorithms, and confirms that the approach of generating 474 

different prediction outputs allows to capture aspects of MHC ligands that is not 475 

captured by binding alone, and that these aspects improve T cell epitope predictions 476 
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[14]. At the same time, the difference in performance is small, highlighting that MHC 477 

binding captures nearly all features of peptides that distinguish epitopes from non-478 

epitopes in current prediction methods.  479 

 480 

It is also interesting to note that the top 172 peptides captured 40% or more epitopes by 481 

the top methods (NetMHCpan-4.0, MHCflurry) (Table 3). This should be viewed against 482 

the total amount of peptides in the entire peptidome that could be generated from VACV 483 

proteome. It means that the top 0.02% of the peptides could capture 40% of the 484 

epitopes and close to 50% of the total immune response (Table 3). Similarly, it took less 485 

than 2% of the top peptides predicted by the best methods to capture 90% of the 486 

epitopes and T cell response. In the same manner less than 0.04% of peptides captured 487 

50% of the epitopes and T cell response (Table 2). This is relevant because it shows 488 

that these methods can significantly reduce the number of peptides needed to be tested 489 

in large scale epitope identification studies. Balance between greater coverage (with 490 

fewer false negatives) vs. greater specificity (with fewer false positives) that comes with 491 

different thresholds and methods has to be made in the context of a specific application. 492 

For example, if the goal of a study is to identify patient specific tumor epitopes for a low 493 

mutational burden tumor, avoiding false negatives is crucial, as there are few potential 494 

targets to begin with. In contrast, if the goal of a study is to identify epitopes that can be 495 

used as potential diagnostic markers for a bacterial infection, there will be a plethora of 496 

candidates, and avoiding false positives becomes much more important.  497 

 498 
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A limitation of previous benchmarks is that they either used MHC binding or MHC ligand 499 

elution data to evaluate performance, or they use T cell epitope datasets for which it is 500 

unclear what constitutes a negative. The dataset we use here is unique in that it 501 

comprehensively defines T cell epitopes in a consistent fashion. The downside of this 502 

dataset is that it is limited to two murine MHC class I molecules. Future benchmarks on 503 

similar datasets for T cell epitopes recognized in humans will be necessary to confirm 504 

that the results hold there.  505 

 506 

In the process of conducting this benchmark, it became clear that comparing methods 507 

that varied in terms of the lengths of peptides they covered introduces difficulties. 508 

Developers want to see methods compared on the same datasets, and can refer to the 509 

values in Table 1. We strongly advocate that all prediction methods should be evaluated 510 

by ranking all possible peptides, which should be extended to ligands from 7 to 15 511 

residues in the case of MHC class I. Method developers should also include guidance 512 

on how scores from different length peptides should be compared. That has been done 513 

in some cases before [26], but has not been done in others, including in several 514 

developed by our own team (SMM, SMMPMBEC).  515 

 516 

We want to mention that out of the 172 peptides that were identified by LC-MS/MS, 37 517 

were detected in modified form but were tested for immunogenicity as synthesized 518 

unmodified peptides (S3 Table). The caveat is that we do not know to what extent the 519 

modification affects binding compared to unmodified form for these peptides or indeed if 520 

some modification were artefacts of sample preparation. We therefore repeated the 521 



 

28 
 

analysis after excluding the peptides identified in modified form and found that the 522 

AUCs did not change much and the rankings of the methods remained same except 523 

that MHCflurry-B moved ahead of MHCflurry-L (S5 Table).  524 

 525 

Although the artificial neural network-based methods were much ahead in performance, 526 

they were found to be slower compared to the matrix-based methods. This is expected 527 

since artificial neural network-based methods employ more complex algorithms 528 

compared to rather linear models used by matrix-based methods. But it should be noted 529 

that offline or standalone versions are available for many methods that are significantly 530 

faster than the online and API versions. These versions can be run on local computers 531 

and users should consider using these standalone versions for doing large scale 532 

predictions.  533 

 534 

Finally, an important aspect of this benchmark is that we have made all data including 535 

prediction results from all benchmarked methods and the code for generating all result 536 

metrics and plots publicly available as a pipeline (https://gitlab.com/iedb-tools/cd8-t-cell-537 

epitope-prediction-benchmarking). We believe this will act as a useful resource for 538 

streamlined benchmarking process for epitope prediction methods. New prediction 539 

method developers can plug in the prediction scores from the new method into this 540 

dataset and run the pipeline for side-by-side comparison of their method’s performance 541 

with those included in the analysis. The only point to remember is that the developers 542 

should exclude this data from the training data for their method. We believe that this 543 

benchmark analysis will not only help guide immunologists choose the best epitope 544 

https://gitlab.com/iedb-tools/cd8-t-cell-epitope-prediction-benchmarking
https://gitlab.com/iedb-tools/cd8-t-cell-epitope-prediction-benchmarking
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prediction methods for their intended use, but will also help method developers evaluate 545 

and compare new advances in method development, and provide target metrics to 546 

optimize against. 547 

 548 
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  636 

7. Supporting information captions 637 

S1 Table. List of publicly available T cell epitope prediction methods 638 

compiled from internet. There were 44 methods with the executables freely 639 

available. This list was further screened for inclusion of the methods in the 640 

benchmark analysis based on certain criteria e.g. availability of trained 641 

algorithms for the two alleles for which we had data. The last column shows 642 

whether the method was included and the reason for exclusion in case it was 643 

not included. 644 

 645 

S2 Table. Methods included in this benchmark analysis. The table shows 646 

the methods finally included in the benchmark analysis and their available 647 

peptide lengths per allele. 648 

 649 

S3 Table. Peptides tested for T cell response. The table shows the 220 650 

VACV peptides that were tested for T cell immune response. It includes the 651 

172 peptides that were identified by mass-spectrometry and the additional 48 652 

peptides that were selected from other sources. This table is derived from 653 

Croft et al., 2019 (dataset-S1 therein). 654 

 655 

S4 File. The VACV reference proteome used for generating VACV 656 

peptides that were used in the analysis. The proteome was collected from 657 
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UniProt (Vaccinia virus strain Western Reserve, 658 

https://www.uniprot.org/proteomes/UP000000344).  659 

 660 

S5 Table. Overall AUCs after excluding the peptides that were identified 661 

in modified form by the LC-MS/MS but tested for T cell response in 662 

unmodified form. The ranking of the methods was same as that with 663 

including all peptides with only one exception that MHCflurry-B moved ahead 664 

of MHCflurry-L.  665 

https://www.uniprot.org/proteomes/UP000000344







































