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Abstract

The universal expressibility assumption of Deep Neural Networks (DNNs) is the
key motivation behind recent work in the system biology community to employ
DNNs to solve important problems in functional genomics and molecular genetics.
Because of the black box nature of DNNs, such assumptions, while useful in
practice, are unsatisfactory for scientific analysis. In this paper, we give an example
of a DNN in which every layer is interpretable. Moreover, this DNN is biologically
validated and predictive. We derive our DNN from a systems biology model
that was not previously recognized as having a DNN structure. This DNN is
concerned with a key unsolved biological problem, which is to understand the
DNA regulatory code which controls how genes in multicellular organisms are
turned on and off. Although we apply our DNN to data from the early embryo of
the fruit fly Drosophila, this system serves as a testbed for analysis of much larger
data sets obtained by systems biology studies on a genomic scale.

1 Introduction

A central unsolved problem in biology is to understand how DNA specifies how genes turn on and off
in multicellular organisms. The “universal expressibility” of deep neural nets suggests that they might
be a valuable tool in this undertaking, but their applicability and acceptance in solving problems in
natural science has been limited by the uninterpretability of their internal computations. We address
both of these areas in this report by describing the reimplementation of a specific and highly predictive
model of transcriptional control as a deep neural net (DNN). The model, chemical in nature, has a
feedforward mathematical structure in which every layer has a specific scientific interpretation. When
translated into DNN formalism, it provides an example of a DNN in which the internal structure is
well understood and which may be of value to the machine learning field.

Deep learning has been widely deployed in genomics and systems biology over the last few years
[11, 2, 27, 37, 9, 43, 39, 13, 35, 34]. Many of the developed tools have been highly successful in
classification problems such as the identification of binding sites, open regions of chromatin, and the
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Figure 1: (a) shows a Drosophila embryo about 3 hours after fertilization which has been stained for
Eve protein as described [48]. Anterior is to the left and dorsal is up. The dark shades indicate the
concentration of Eve protein and the stripes are numbered. The white box is the one dimensional
region of interest used to generate the data[20]. (b) The TF concentrations found across the embryo
[48]. In the graph, 58 data points are shown, corresponding to 58 nuclei on the A-P axis. Each
nucleus is 1 % E.L. in size. The identity of TFs is shown in the key; the horizontal axis shows position
in percent egg length (E.L.) and the vertical axis shows protein concentration.

location of enhancers. Deeper understanding requires more quantitative studies. One recent example
that goes beyond classification concerns a fully quantitative and highly predictive DNN model of the
role of untranslated RNA leader sequences in gene expression in yeast [11], We believe that these
studies have two sets of limitations. First, they take a universal expressibility approach without much
understanding and interpretation of the underlying chemical and biological mechanisms giving rise
to to the phenomena under study. This limits the contributions DNNs can make to increasing human
understanding of fundamental biological processes. Here we consider a DNN in which each layer has
a specific chemical or biological interpretation. Studies of regulatory DNA with DNNs have treated
only the sequence itself, but in metazoa (multicellular animals) different cell types have very different
gene expression states although they contain the same DNA. Here we consider a DNN in which state
is described not only by the sequence, but also by the set of regulatory proteins present in each cell.
We now describe the problem to be solved in both mathematical and biological terms.

Mathematically, the “expression” of a gene is the rate at which it synthesizes mRNA (the “transcript”)
from a complementary DNA template. This rate d[mRNA]/dt = f(D,v) where D = (Di), where
each Di ∈ {A,C,G, T} is a base in the sequence of regulatory DNA, and v = (v1, . . . , va, . . . , vn),
where each va is the nuclear concentration of a regulatory DNA binding protein known as a “transcrip-
tion factor” (TF). The machine learning task is to learn the function f from a series of observations
(Dj ,vjk) of the expression of sequence j in cell type k, where k ∈ {1, . . . ,M}. The essence of the
scientific problem is that each sequence Dj must express correctly in each cell type, reflecting the
fact that in a multicellular organism, different sets of genes are expressed in different cell types, but
each cell type contains the same DNA.

Biologically, regulatory DNA is noncoding DNA which can be upstream (5’), downstream (3’),
or within (intronic) the complementary mRNA template, but it is distinct from (exonic) DNA that
contains codons that specify the amino acid sequence of the gene’s protein product. TFs bind to DNA
in its double stranded form, in which each strand has a complementary base (A and T; G and C) at
each position and the two strands have opposite 3’-5’ orientations. In metazoans, regulatory DNA is
frequently much larger than the coding portion of the gene. The regulatory DNA contains segments
of 500 to 1000 base pairs (bp) called “enhancers”, each of which directs expression in a particular
domain or tissue type. In this study, we consider a gene called eve which acts in the early embryo
of the fruit fly Drosophila melanogaster, at which time it forms a pattern of seven stripes as shown
in Figure 1. The entire gene is 16.5 kilobases (kb) of DNA in length, but the mRNA transcript is
only 1.5 kb (Figure 2). We consider the action of eve from 1 to 3 hours after the start of embryonic
development. At this time the embryo is a hollow ellipsoid of cell nuclei that can be treated like a
naturally grown gene chip in which d[mRNA]/dt, Dj , and vjk are fully observable at a quantitative
level. The embryo contains two orthogonal axes in the anterior-poster (A-P) and dorsal-ventral (D-V)
directions. In the central portion of the embryo, gene expression on the two axes is uncoupled, so cell
type and gene expression can be visualized by plotting relevant state variables in one dimension.

In this paper, we show that DNNs can be used to generate a predictive model of gene expression.
Our starting point is a previously published model of transcriptional control [23], which is one of a
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Figure 2: (a): The figure shows a diagram of the eve locus. The transcript is indicated by black
box; enhancers are indicated by pink, blue or white boxes and are labeled with the eve stripe that
they drive. (b): Fusion constructs that are used in the training process. The blue box represents the
MSE3/7 enhancer and the red box represents the MSE2 enhancer. The four graphs in (b) shows the
data used for training and outcome from the model after 500 epochs using Adam. In each graph,
58 data points are shown, corresponding to 58 nuclei on the A-P axis. Each nucleus is 1 % E.L. in
size. The orange lines show the observed data from the experiments [23] and the blue lines show the
model output. The overall RMS is of the training is calculated to be 10.4.

family of so-called thermodynamic transcription models [38, 21, 42, 40, 22, 16, 23, 32, 41, 4, 5]. In
these models, occupancy of DNA by TFs is calculated using thermodynamics, and phenomenological
rules are used to calculate the transcription rate from the configuration of bound factors. Like DNNs,
thermodynamic transcription models have a feedforward structure that can be described in layers.
The form of the resulting equations makes back propagation and hence SGD difficult or impossible
because of the need to hand code complex partial derivatives, so these models are optimized by
zero order methods such as Simulated Annealing or Genetic Algorithms. Despite this apparent
mathematical distinction, we were able to translate the chemical model of transcription into a standard
DNN form that could perform rapid learning by SGD.

The resulting model is, to our knowledge, one of the first fully interpretable DNNs with an exact
interpretation for each of the unknown parameters. It is also an example of a biologically validated
DNN that is not perceptron based. Some of the parameters can be and are extracted from independent
experiments, resulting in a very small number of parameters for an extremely deep network. Although
theories of metazoan transcriptional control have largely been developed in the fruit fly Drosophila
because of its unique experimental advantages, they have also been applied to mouse [6]. Below,
in Section 2, we will describe the function of each layer and the interpretation of parameters. In
section 3, we focus on the training and evaluation of performance. Finally, in section 4, we discuss
the scientific implications of our results.

2 Understanding each layer

The model’s input is DNA sequence and TF concentration. The TFs have functional roles which, in
the present application, are known from independent experiments. Activators activate transcription,
quenchers suppress the action of activators over a limited range, and certain activators can also
convert nearby quenchers into activators. In each of these regulatory mechanisms, multiple bound
TFs are required to perform a regulatory action. We perform this calculation as follows. Binding
site locations and affinities are determined from sequence. Together with TF concentrations, this
information is used to calculate the occupancy of each binding site. We then calculate the effects of
coactivation, followed by the effects of quenching. The total amount of remaining activation is then
summed and passed through a thresholding function. We describe each step below.
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2.1 Computing Fractional Occupancy

2.1.1 Identifying the binding sites

An indicator representation of DNA sequence is used as input. The column index is the base pair
position number in the sequence. The row index indicates which of the 4 bases (A,C,G,T) is observed.
In the case where the sequence cannot be identified, a fifth row (N) is used. For example, if we have a
sequence of ACTNGTTA, the corresponding matrix is

A 1 0 0 0 0 0 0 1
C 0 1 0 0 0 0 0 0
G 0 0 0 0 1 0 0 0
T 0 0 1 0 0 1 1 0
N 0 0 0 1 0 0 0 0


The nine TFs of interest are Bicoid (Bcd), Caudal (Cad), Drosophila-STAT (Dst), Dichaete (Dic),
Hunchback (Hb), Krupple (Kr), Knirps (Kni), Giant (Gt), and Tailless (Tll) (Figure 1b). The
identification and affinity characterization of binding sites for TF a requires a convolution layer with
a Position Weight Matrix (PWMa) as its kernel. The PWM can be understood as a convolution kernel
in which the number of columns is the number of nucleotides of DNA in physical contact with a
bound TF. Padding is not required for the columns. In the work described here, we use the same high
quality experimentally obtained PWMs as previously [23]. Unlike many convolution matrices used
in deep learning, PWMs make direct experimental predictions about DNA properties, a fact used in a
previous study to experimentally confirm PWMs obtained by deep learning techniques [11].

Chemically, the PWM represents an additive model of binding in which the Gibbs free energy ∆G of
binding is the sum of the free energies of binding to each nucleotide. Statistically, the PWM score
can be regarded as the likelihood of finding a binding site at a given position, calculated using a
variational approximation of the likelihood using only the marginal likelihood of each base. The
resulting score, denoted by Si,i+m;a, is an affine transformation of the the free energy ∆Gi,i+m;a of
TF a binding to a site extending from base i to base i + m. In many cases, including most of the
TFs considered here, m can be read off directly from DNAse I footprints [44, for example]. TFs
physically bind in the major groove of the DNA double helix but the PWM is convolved with only a
single strand. We compensate for this fact by also scoring the complementary strand, in which bases
are replaced by their complements (A→ T; C→ G; T→ A; G→ C), and orientation is reversed.
Scoring each strand results in a 1× n array of scores Sa, where n is the sequence length. At each
base position, we set the score to be the larger of the two scores at that position.

We next calculate the equilibrium affinity Ki,i+m;a of each binding site. If ∆Gi,i+m;a were known
in units of kcal/mole, then Ki,i+m;a = exp(∆Gi,i+m;a/RT ), where R is Boltzmann’s constant and
T the absolute temperature. Si,i+m;a is related to ∆Gi,i+m;a by an affine transformation ax+ b in
which b is found from experiment and a is learned by training as follows. Our convolution kernel is
accompanied by a fixed bias Smax;a which is the maximum possible score for any particular TF a.
We only consider binding to sites with scores greater than zero, so we pass the exponentiated free
energy through a ReLU and apply an indicator function to assure that below threshold sites disappear,
so that

Ki,i+m;a = exp

(
− (ReLU(Si,i+m;a)− Smax;a)

λa

)
I(Si,i+m;a > 0), (1)

where λa is a learnable parameter for each TF a. The Ki,i+m;a, arranged according to positions on
the DNA sequence, produce another 1× (n−m) vector Ka. Adjusting for the size of m, we further
concatenate Ka for all TFs to produce K, which we use for the calculation of fractional occupancy.

2.1.2 Belief propagation and partition function computation

Moving from affinity Ki,i+m to fractional occupancy requires the consideration of all possible states
in which the TFs can bind on the DNA. The fractional occupancy fi,i+m;a denotes the average
occupancy of the site at equilibrium or the probability of finding the specific protein a at the site
(i, i + m) at a given instant. The calculation requires consideration of interactions between sites.
Two overlapping sites cannot be occupied at the same time, and in some cases a TF bound at one
site increases the binding affinity at a nearby site by a factor of wcoop

ij . In the present application,
cooperativity only occurs between pairs of bound Bcd less than 60 bp apart. This calculation is
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best performed by computing the partition function Z, which can be calculated by a fast, recently
discovered algorithm [4, Appendix S1]. The algorithm is essentially a form of Belief propagation
which can be represented as a bi-directional RNN across K, and is given in Algorithm 1.

Algorithm 1 The Algorithm for Fractional Occupancy

Initialize Z−N = 1 and Z+
0 = 1

for i← 1 to N do
qi,a = [TF ]aKi,a

for a ∈ {Transcription Factors} do
Z+nc
i,a = qi,aZ

+
i−m−1

Z−ncN−i,a = qN−i,aZ
−
N−i+m+1

Z+c
i,a =

∑cd
j=m+1 w

coop
ij qi,aqi−j,aZ

+
i−j−m−1

Z−ci,a =
∑cd

j=m+1 w
coop
ij qN−i,aqN−i+j,aZ

−
N−i+j+m+1

end for
Z+
i =

∑
a Z

+nc
i,a + Z+c

i,a

Z−N−i =
∑

a Z
−nc
i,a + Z−ci,a

end for
return Z+nc

a ,Z+c
a ,Z−nca ,Z−ca , Z−0

The fractional occupancy is then given by

fi,i+m;a =
Z+nc
i,i+m,aZ

−c
i,i+m,a + Z−nci,i+maZ

+c
i,i+m,a + Z−nci,i+maZ

+nc
i,i+m,a

Z−0
. (2)

2.2 TF-TF Interactions

Interactions between bound TFs follow phenomenological rules. A central feature of the cis-regulatory
DNA of metazoan genes is the fact that biological function is encoded in multiple binding sites
[47, 44, 45]. This fact is expressed mathematically in the phenomenological equations below. In
the present application, bound TFs have specific roles derived from specific experimental results,
although this approach also works if the roles are not known a priori [6]. Here, Bcd, Cad, Dst and
Dic are activators; Hb, Tll, Kni, Kr and Gt are quenchers; and both Bcd and Cad are coactivators
of Hb. We now describe the actions of each class of TF in the order which we compute them. The
ultimate goal of this computation is to obtain the summed action of activators after their contribution
has been increased by coactivation and diminished by quenching.

2.2.1 Coactivators

Coactivators turn a nearby quencher into an activator. This action is described by the equation [23, 4]

f̂QC

i = fQC

i

i+k∏
j=i−k

(1− dc(j)EQC

C fCj ), (3)

where f̂QC

i is the portion of activator fractional occupancy created from the total fractional occupancy
fQC

i . dc(j) is a convolutional kernel describing the distance dependence of coactivation. dc(j) = 1
if | j − i | less than 156 bp. In this application, k = 206. As | j − i | increases to 206 bp, dc(j)
decreases linearly to 0. EQC

C ∈ [0, 1] denotes the relative strength of the coactivators. fCj simply
refers to fractional occupancy of Bcd and Cad since they are the only coactivators in this setting.

It is easy to observe that equation (3) is the first term of a Taylor expansion of

f̂QC

i ≈ fQC

i

i+k∏
j=i−k

(1−EQC

C fCj )dc(j) ⇒ f̂QC

i = exp

 i+k∑
j=i−k

dc(j) log(1− EQC

C fCj )

 fQC

i . (4)
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This can be turned into three convolutional linear activation units, so that

yj = log(1− EQC

C fCj ); zi = exp

 i+k∑
j=i−k

dc(j)yj

 ; f̂QC

i = fQC

i zi. (5)

2.2.2 Quenchers

As their name suggests, quenchers suppress activation. Their action is local and occurs only within
around 100 to 150 base pairs [17]. The basic mathematical formulation of the effect of nearby
quenchers on the activator at position i is given by [23]

f̂Ai = fAi

i+k∏
j=i−k

(1− dq(j)EQ
Af

Q
j ), (6)

where fAi is the fractional occupancy of activators whether coactivated or not, f̂Ai is the fractional
occupancy of activators after quenching, fQj is the fractional occupancy of a quencher bound at
position j. EQ

A ∈ (0, 1) is the strength of quencher Q on activator A and dq(j) is a convolutional
kernel representing the range of quenching on the DNA strand. k = 150 bp, and dq(j) = 1 when
| j − i |≤ 100 and goes linearly down to 0 from 100 to 150 bp. Using a mathematical argument
similar to that of the previous section, we can write

f̂Ai ≈ exp

 i+k∑
j=i−k

dq(j) log(1− EQ
Af

Q
j )

 fQi . (7)

This gives three convolutional linear activation units.

yj = log(1− EQ
Af

Q
j ); zi = exp

 i+k∑
j=i−k

dq(j)yj

 ; f̂Qi = fAi zi. (8)

2.2.3 Activation

Last, we sum the fractional occupancies of all activators remaining after the previous two steps. We
consider the activators to lower the energy barrier in a diffusion limited Arrhenius rate law [4], which
has the mathematical form of a sigmoidal thresholding function. This results an fully connected layer
which yields the mRNA synthesis rate. In the experimental system used, mRNA has a life time much
shorter than the time required to change transcription rates, so that the mRNA concentration [mRNA],
an experimentally observable quantity, is given by

[mRNA] ∝ d[mRNA]
dt

= R

 exp
(∑

j∈{A,QC}Ej

∑
i f̂

j
i − θ

)
1 + exp

(∑
j∈{A,QC}Ej

∑
i f̂

j
i − θ

)
 . (9)

Here Ej > 0 represents the activating strength of each activator and is obtained by training on the
data. θ, also obtained by training, is the amount of activation in the absence of activator. R is the
maximum synthesis rate, and we train on the target

[mRNA]train =
[mRNA]cell√

(
∑

cells
[mRNA]2

cell
)
. (10)

3 Implementation, Training, and Results

We implemented and trained this model in Keras with a TensorFlow back end ([10, 1]).The resulting
architecture is shown in Figure3. The resulting model is deemed by Keras to have 223 Layers and
52 unknown parameters. As this does not use any of the conventional architecture ([25, 19]), we
frequently use the Lambda functions in Keras to represent some of the activation functions and PWM
convolutions. Algorithm 1 was implemented as a special layer in Keras with two rnn functions.
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Figure 3: This is a graphical representation of the DNN. (Left) Chemical calculations. The computa-
tion can be seen as the DNA going through a convolution and then passing through a ReLU and then
the the (exp(·)) activation function with bias. (Right) The graphical representation of interactions
between bound TFs. Coactivators activate quenchers, quenchers quench activation, and activators
combined together in a fully connected layer produce mRNA.

The training data and PWMs was as previously described [23], although training data was limited
to the fusion constructs M32, M3_2, M23, and M2_3. The model was trained using a single
Intel Core i7-8700K CPU. The training data contains 232 observations. The model was trained
with 500 epochs using Adam ([24]) with Nesterov momentum as implemented in Keras. Training
took approximately 4 hours. This compares with several days of serial simulated annealing before
Algorithm 1 was devised [23], and is about equivalent to the time taken by code using Algorithm 1
running in parallel with the loss function for each construct computed on a separate core. However,
optimization by simulated annealing requires several million evaluations of the loss function. while
the implementation use here required about 10000. The earlier work used about 10000 lines of
compiled C++ while this work uses less than 1000 lines of Python. However, the execution times
indicate that there is considerable scope for improvement of the TensorFlow back end for this type
of problem. Moreover, we see evidence of numerical issues in the Tensorflow back end which
constrained us to make binding sites for all TFs the same size.

The results of the training are shown in Figure 2. We selected this training set, a pair of enhancers
which produce greatly altered gene expression when fused, because they are known to produce a
constrained model that is highly predictive [23]. It is important to note that this model tends not to
over-fit the data since the number of parameters is only 52 compared to the 232 nuclei we used as the
training set.

Figure 4: The figure shows four examples of predictions driven by enhancers not used for training.
The location of eve stripes 2 through 7 are shown by vertical dashed lines. The vertical axis shows
predicted mRNA concentration and horizontal axis shows A-P position in % E.L. The enhancers
shown are described in the text.

In a practical setting, the model should generate biologically accurate relative mRNA concentration
at the right A-P position in % E.L. given a sequence not in the training set. We tested the predictive
power of our DNN by confronting it with set of enhancer sequences which the model has not
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previously seen. In Figure 4, we show examples of four types of predictions, each of which consists
of 58 nuclei and hence 58 separate predictions. We used the following enhancers for predictions.
run_str3_7 is the enhancer of the runt gene of D.melanogaster that drives runt stripes 3 and 7, each
of which is about 2 % E.L. anterior of the corresponding eve stripes. Biologically, the prediction is
reasonably accurate except for the low level of expression in the anterior. eve_S2E(yak) is the stripe
2 enhancer of Drosophila yakuba, expressed in D. melanogaster embryos [29, 30]. D. yakuba is a
species of Drosophila that is closely related to D. melanogaster but has altered sets of binding sites.
The position of Stripe 2 in this case is accurate but the level is low. eve_S2E(cyn) and eve_S37E(put)
are respectively the enhancers of eve stripe 2 from Sepsis cynipsea and the 3/7 enhancer from Themira
putris, both of the Sepsidae family, driving expression in D. melanogaster embryos [15]. These
predictions are quite accurate including the fact that they are expressed slightly posterior to those of
the D. melanogaster eve gene. These enhancers have a DNA sequence completely diverged from
those of D. melanogaster [15, 14]. These predictions demonstrate the generalization capabilities of
the DNN implementation of the model.

4 Discussion

We discuss the the implication of the results presented here to both the biology and Deep Learning
communities in turn. With respect to Deep Learning, our model constitutes an example of a fully
interpretable DNN that is not merely biologically plausible but biologically validated [23]. It is our
hope that this example will provide insights into the interpretabilities of DNNs in general, a problem
that has received wide attention in the community [12, 8, 7, 26, 50, 31, 51].

More generally, neurobiology, together with the physics of spin-glasses, provided the initial inspiration
for the mathematical structure of neural nets in general, and DNNs in particular were inspired by
the structure of visual processing in the cerebral cortex. Perceptron based DNNs have an additive
structure that arose from the additivity of voltages in neurons and spin glasses [33, 18]. In contrast,
the mathematical structure of thermodynamic transcription models comes from multiplicative terms
arising from the law of mass action, while the layered structure comes from the complex set of
regulatory mechanisms that act in metazoan transcription. Perhaps the structure of the equations used
here will suggest new applications and architectures for DNNs.

With respect to biology, the proof of concept presented here is much simpler to code than the original
model, amounting to about 600 lines of Keras compared to about 10,000 lines of C++. Implementation
in Keras also provides a numerical advantage by permitting the use of back propagation (BP)
and stochastic gradient descent for optimization without the need to hand code partial derivatives.
Although some issues connected to the speed of Keras implementation remain, these results suggest
that models of this type could be scaled up to much larger datasets. Until recently such datasets,
which must contain not only information about sequence but also data concerning the concentration
of TFs, were scarce. Such datasets, on a genomic scale, have begun to be available for flies and
mammals, including humans [3, 28, 46, 36, 49]. In these datasets, the functional role of TFs is
typically unknown. In a study which used our model in mouse [6], all possible combinations of
TF functional roles were considered, albeit with a considerable increase in computational expense.
The data used in this study was not at a genomic scale, and an exhaustive search of TF functional
roles at a genomic scale would be prohibitively expensive in computation. However, the introduction
of reinforcement learning techniques may provide an avenue for surmounting this computational
barrier. If the techniques presented here provide a way forward to precise characterization of gene
regulation in metazoan organisms, it would be one further example of how investigation in the fruit
fly Drosophila, with its special properties, can have global implications for biology.
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