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Abstract: The description of the environment in which a biomedical simulation operates (model 
context) and parameterization of internal model rules (model content) requires the optimization of a 
large number of free-parameters; given the wide range of variable combinations, along with the 
intractability of ab initio modeling techniques which could be used to constrain these combinations, an 
astronomical number of simulations would be required to achieve this goal.  In this work, we utilize a 
nested active-learning workflow to efficiently parameterize and contextualize an agent-based model of 
sepsis. Methods: Billions of microbial sepsis patients were simulated using a previously validated 
agent-based model (ABM) of sepsis, the Innate Immune Response Agent-Based Model (IIRABM). 
Contextual parameter space was examined using the following parameters: cardio-respiratory-
metabolic resilience; two properties of microbial virulence, invasiveness and toxigenesis; and degree 
of contamination from the environment.  The model’s internal parameterization, which represents gene 
expression and associated cellular behaviors, was explored through the augmentation or inhibition of 
signaling pathways for 12 signaling mediators associated with inflammation and wound healing. We 
have implemented a nested active learning approach in which the clinically relevant model 
environment space for a given internal model parameterization is mapped using a small Artificial 
Neural Network (ANN).  The outer AL level workflow is a larger ANN which uses a novel approach to 
active learning, Double Monte-Carlo Dropout Uncertainty (DMCDU), to efficiently regress the volume 
and centroid location of the CR space given by a single internal parameterization.   Results: A brute-
force exploration of the IIRABM’s content and context would require approximately 3*1012 simulations, 
and the result would be a coarse representation of a continuous space.  We have reduced the number 
of simulations required to efficiently map the clinically relevant parameter space of this model by 
approximately 99%.  Additionally, we have shown that more complex models with a larger number of 
variables may expect further improvements in efficiency. 
 
Introduction  
Sepsis in an inflammatory condition with a mortality rate of between 28%-50%(1).  Numerous 
mechanistic computational simulations of acute inflammation and sepsis have been utilized over the 
past two decades(2-9). These models have demonstrated that the sepsis population is much more 
heterogeneous than previously thought and this can be reflected by utilizing a range of 
multidimensional parameters that correlate to biologically plausible behaviors and phenotypes. 
Despite insights generated form these methods, there remain considerable challenges in the 
calibration and parameterization of the models. The description (contextualization) of the environment 
in which a biomedical simulation operates and parameterization of internal model rules (model 
content) requires the optimization of a large number of free-parameters; given the wide range of 
variable combinations, along with the intractability of ab initio modeling techniques which could be 
used to constrain these combinations, an astronomical number of simulations would be required to 
achieve this goal.   
 
The problem of combinatorial complexity in the selection of model parameters is well-established in 
the computational/biological modeling communities (10-14).  In previous work (2), we utilized high-
performance computing to demonstrate the need for comprehensive “data coverage” among possible 
model states as well as the importance of internal parameter variation (as compared to model 
structure) to capture the full range of biological heterogeneity seen clinically.  In order to render this 
task computationally tractable, we have employed a nested active learning approach in order to 
efficiently and comprehensively explore model parameter space.  
 
IIRABM: The primary model analyzed in this work is the Innate Immune Response Agent Based 
Model (IIRABM) (3, 15).  The IIRABM is an abstract representation/simulation of the human 
inflammatory signaling network response to injury; the model has been calibrated such that it 
reproduces the general clinical trajectories seen in sepsis.  The IIRABM operates by simulating 



multiple cell types and their interactions, including endothelial cells, macrophages, neutrophils, TH0, 
TH1, and TH2 cells as well as their associated precursor cells.  The simulated system dies when total 
damage (defined as aggregate endothelial cell damage) exceeds 80%; this threshold represents the 
ability of current medical technologies to keep patients alive (i.e., through organ support machines) in 
conditions that previously would have been lethal.  The IIRABM is initiated using 5 external variables – 
initial injury size, microbial invasiveness, microbial toxigenesis, environmental toxicity, and host 
resilience 
 
Active Learning: Active learning (AL) is a sub-field of machine learning (ML) which focusses on 
finding the optimal selection of training data to be used to train a ML or statistical model (16). AL can 
be used for classification (17, 18) or regression (19, 20).  AL is considered to be an ideal technique for 
modeling problems in which there is a large amount of unlabeled data and manually labelling that data 
is expensive.  In these circumstances (specifically the costly data labelling) AL provides to most 
generalizable and accurate model for the cheapest cost, which for the purposes of this work, is 
computation time. 
 
EMEWS: Our ML models are trained and integrated using the Extreme-scale Model Exploration With 

Swift (EMEWS) framework (21-23). EMEWS enables the creation of high-performance computing 

(HPC) workflows for implementing large-scale model exploration studies. Built on the general-purpose 
parallel scripting language Swift/T (24), multi-language tasks can be combined and run on the largest 
open science HPC resources (25) via both data-flow semantics and stateful resident tasks. The ability 
that EMEWS provides for incorporating model exploration algorithms such as AL, implemented in R or 
Python, allows for the direct use of the many libraries relevant to ML that are being actively developed 
and implemented as free and open source software. 
 
Methods 
The lower-level AL procedure seeks to find the boundary of the parameter space deemed “clinically 

relevant” (2) as a function of four parameters which describe the context in which the IIRABM 

operates: two measures of microbial virulence (invasiveness and toxigenesis), host resilience, and 
environmental toxicity.  In this scheme, there are two classes: clinically relevant and not clinically 
relevant.  We assume that there exists some function,  

𝑦 = 𝑓(�⃑�), 𝑥 ∈ 𝜒 ⊂ ℝ𝑛, 𝑦 ∈  ℝ 
which accurately classifies model context parameters can be approximated given input data from the 
training set: 

𝐷𝑡𝑟𝑎𝑖𝑛 = {𝑥𝑗
𝑡, 𝑓(𝑥𝑗

𝑡)} 

for 𝑗 = 1, … , 𝑛.  The NN model uses a binary cross-entropy (26) loss function, in which the loss is given 
by: 

𝐿 = − ∑ 𝑦𝑖log (�̂�𝑖)

2

𝑖=1

 

Where 𝑦𝑖 is the ground truth value and �̂�𝑖 is the NN-approximated score. The AL algorithm begins with 
a randomly selected set of 20 points. The IIRABM simulation then runs a fixed number of stochastic 
replicates of the input points to determine class membership.  This information is then used to train the 
ML model. The algorithm then ranks the remaining unlabeled parameterizations by class-membership 
uncertainty (see Eq. 1).   

{𝑥𝑖+1} = min
𝑥

(0.5 − 𝑃𝑖(𝑦|𝑥)) 

Those parameterizations whose class is most uncertain in the current ML model are then selected for 
labeling and the process repeats until a stopping criterion is reached; for the purposes of this work, 
once the cross-validation accuracy crossed 0.95, the algorithm was stopped. 
 
The upper-level AL workflow uses a modified version of Dropout-based AL for regression presented in 
(20), hence referred to as Double Monte-Carlo Dropout Uncertainty Estimation (DMCDUE).  The goal 



of this AL-workflow is twofold: to predict the volume of CR space and to predict the centroid location of 
CR-space, given a model internal parameterization.  For each regression task, we assume that there 
exists a function,  

𝑦 = 𝑓(�⃑�), 𝑥 ∈ 𝜒 ⊂ ℝ𝑛, 𝑦 ∈  ℝ 
which approximates a map of CR space as a function of internal model parameterization which 
comprises the training set: 

𝐷𝑡𝑟𝑎𝑖𝑛 = {𝑥𝑗
𝑡, 𝑓(𝑥𝑗

𝑡)} 

for 𝑗 = 1, … , 𝑛.  The NN model uses a mean-squared error (MSE) loss function, given by: 

𝐿 = ∑ (𝑓(𝑥𝑖
𝑡) − 𝑓(𝑥𝑖

𝑡))
2

𝑛

𝑖=1

 

Where 𝑓𝑖 is the ground truth value for either the CR volume or centroid and 𝑓𝑖 is value regressed by 
the NN.  In this scheme, we utilize a four-layer fully-connected neural network with a 256-Dropout-128-
Dropout architecture.  The dropout layer (27) serves to provide a stochastic variability to the output of 

the NN.   
 
We begin by pre-selecting 10,000 (out of 
40,353,607) internal parameterizations 
randomly; this random selection then makes up 
the available pool, 𝒫,of unlabeled data. From 
this pool, we begin the AL procedure by 
selecting 100 internal parameterizations 
randomly from 𝒫. These internal 
parameterizations are then fed into the lower-
level AL workflow, which is used to map the CR 
space and return an approximate volume and 
center-point.  This data is then used to train the 

upper-level neural net (see Fig. 1).  The trained 
NN is then used to predict the volume or 
centroid location for the remaining unlabeled 

data for 10 stochastic replicates (the dropout layer provides stochasticity).  The parameterizations 
from 𝒫 which have the highest variance are selected for labeling, and this process repeats.  
Pseudocode for this procedure is given below:        

1. Initialize training pool 𝒫𝑈; upper-level dataset 𝐷𝐼𝑃; 𝑧𝑢, the maximum size of the dataset; and 𝑚𝑢 
samples to be added on each iteration, 

2. While |𝐷𝐼𝑃| < 𝑧𝑢: 
a. For each element i in 𝐷𝐼𝑃: 

i. Initialize training pool 𝒫𝐿; lower-level dataset 𝐷𝐸𝑃; 𝑧𝑙, the maximum size of the 

dataset; and 𝑚𝑙 samples to be added on each iteration,  
ii. While |𝐷𝐸𝑃| < 𝑧𝑙: 

1. Train network on  𝐷𝐸𝑃 
2. Obtain rank 𝑟𝑗 for each 𝑥𝑗 in 𝒫𝐿 according to maximum class-uncertainty 

3. Label the set of 𝑚𝑙 parameterizations from 𝒫𝐿 

4. Add the annotated data to 𝐷𝐸𝑃  
5. Calculate stopping metrics, stop if appropriate  

b. Train network on 𝐷𝐼𝑃 

c. Obtain rank 𝑟𝑖 for each 𝑥𝑖 in 𝒫𝑈 according to maximum regression variance 
d. Label the set of 𝑚𝑢 parameterizations from 𝒫𝑢 

e. Add the annotated data to 𝐷𝐼𝑃 
f. Calculate stopping metrics, stop if appropriate 

 
Source code and input data can be found at: https://bitbucket.org/cockrell/iirabm_al/ 

Figure 1: A diagram illustrating the nested active learning workflow 

 

https://bitbucket.org/cockrell/iirabm_al/


 
Results 
In the lower-level AL workflow, we map CR space as a function of four parameters, external to the 
IIRABM’s internal rule set.  An example of this space can be seen in Fig. 2. In this figure, outcome 
spaces for patients with low environmental toxicity (toxicity=1) to high environmental toxicity 
(toxicity=10) are shown from left to right.  Each point represents 4000 in silico patients (40 injury sizes, 
100 stochastic replicates).  Points are color-coded based on the outcomes generated.  The CR space 
is shown in green. 

 
Figure 2: Outcome spaces for patients with low environmental toxicity (toxicity=1) to high environmental toxicity (toxicity=10) are shown from 
left to right. 

 
We utilized seven different ML models to map the CR space: Artifical Neural Net, Adaptive Boosting, 
Naïve Bayesian, Random Forest, TreeBag, AdaBoost M1, Bag – Flexible Discriminant Analysis with 
Generalized Cross Validation.  Results from this are shown in Fig. 3, which displays the F-score as a 
function of AL iteration number (and by proxy, dataset size). 
 

It is readily apparent that a NN is the best type of ML 
model for mapping this space.  By iteration 10, 
which uses 1000 parameterizations (out of 8800 
possible), we can achieve an average class-
prediction accuracy of >98%.  The resulting ML 
model is then utilized to efficiently calculate the 
location and centroid of the CR space and train the 
upper-level neural net.  Results from the upper-level 
AL procedure are shown in Figure 4.  In panel A, we 
display the percent volume error as a function of the 
number of training samples for AL, Random 
Sampling (RS), and “Actively Non Learning” (ANL).  

ANL refers to utilizing the opposite of the AL 
sampling criterion. In this case, for AL we chose 
samples that maximized prediction variance; for 

ANL, we chose samples that minimized prediction variance.  As expected, AL outperforms RS and 
requires fewer samples to converge to the error minimum. Additionally, both methods significantly 
outperform ANL, as expected.  In Panel B, we show the standard deviation of the error for the previous 
three methods.  Here, AL significantly outperforms RS in that the intelligent sampling criterion leads to 
a suite of models with a larger degree of precision in the volume prediction, whereas the changes in 
standard deviation of the error are minimal for ANL and minimal for RS after the first few samples.  
Panel C displays the error (as a Euclidean distance) as a function of the number of samples.  Once 
again, AL outperforms RS, though by a relatively modest amount. 

Figure 3: F-score as a function of Active-Learning iteration for a 
suite of ML techniques 



 
 
 
Discussion 
We have described a nested active learning workflow which efficiently and accurately can characterize 
a high-dimensional Random Dynamical System.   We remove inefficiencies due to oversampling small 
regions of parameter space using the Double Monte-Carlo Dropout Uncertainty Estimation (DMCDUE) 
approach.  We note that AL outperforms RS in both the volume and centroid location predictions, but 
the greatest strength comes from the significant increase in precision generated by a suite of AL-
trained models. 
 
This work demonstrates that comprehensive (and accurate) exploration of computational models with 
many parameters is both possible and computationally tractable, given current techniques in machine 
learning and high-performance computing. 
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Figure Captions 
 
Figure 1: A diagram illustrating the nested active learning workflow 
 
Figure 2: Outcome spaces for patients with low environmental toxicity (toxicity=1) to high 
environmental toxicity (toxicity=10) are shown from left to right.   Each point represents 4000 in silico 
patients (40 injury sizes, each with 100 stochastic replicates).  Points are color-coded based on the 
outcomes generated. Blue points represent simulations that healed under all circumstances.  These 
points are distributed in regions of space where host resilience is high and the bacterial virulence is 
low (lower invasiveness and lower toxigenesis).  Red points represent simulations that always died 
from overwhelming infection; these points are distributed in regions of high bacterial virulence (higher 
values for invasiveness and toxigenesis).  Black points represent simulations that either died from 
overwhelming infection or healed completely and mark the boundary between simulations that always 
heal and simulations always die from infection.  Pink points represent simulations which either died 
from overwhelming infection or hyperinflammatory system failure; these points are found primarily in 
the simulations that were treated with antibiotics and had low values for environmental toxicity and 
host resilience.  Green points represent the Clinically Relevant simulations as these parameter sets 
lead to all possible outcomes; these points are distributed in regions of low to middle values of the 



host resilience parameter and moderately virulent infections.  For all classes of simulation, the final 
outcomes are primarily dependent on the host resilience and microbial virulence 
 
Figure 3: Results from Lower-Level AL – Clinically Relevant space (see Fig. 2) is mapped as a 
function of four parameters, external to the IIRABM’s internal rule set. We utilized seven different ML 
models to map the CR space: Artifical Neural Net, Adaptive Boosting, Naïve Bayesian, Random 
Forest, TreeBag, AdaBoost M1, Bag – Flexible Discriminant Analysis with Generalized Cross 
Validation.  The F-score is shown on the y-axis as a function of the number of AL iterations performed. 
 
Figure 4: Results from Upper-Level AL –In Panel A, we show the percent volume error as a function 
of the number of input training samples using Active Learning (AL), Random Sampling (RS), and 
Actively Not Learning (ANL), in which the learning criterion is the opposite of the AL criterion.  We see 
that AL arrives at a more accurate prediction with fewer samples than RS or ANL.  In Panel B, we 
show the standard deviation of the error of the volume prediction for the three above methods and 
note that AL not only generates a suite of more accurate models, but also has a much higher degree 
of precision. In Panel C, we show the error (in this case a Euclidean distance) in the centroid location 
prediction.  AL once again outperforms RL. 
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