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Abstract 

A detailed understanding of changes in blood protein biomarkers occuring in individuals 
over time would enable truly personalized approaches to health and disease monitoring. Such 
measurements could reveal smaller, earlier departures from normal baseline levels of biomarkers 
thus allowing better disease detection and treatment monitoring.  Current practice, however, 
generally involves infrequent, sporadic biomarker testing, and this undersampling likely fails to 
capture important biological phenomena.  Here we report the use of a robust multiplex immuno-
mass spectrometric method (SISCAPA) to measure a panel of clinically-relevant proteins in a 
unique collection of 1,522 dried blood spots collected longitudinally by 8 individuals over 
periods of up to 9 years, with daily sampling during some intervals.  Analytical workflow CVs of 
2-6% for most assays were achieved by normalizing DBS plasma volume using a set of 3 
minimally varying proteins, facilitating temporal analysis of both high- and low-amplitude 
biomarker changes compared to personalized baselines.  The biomarkers included a panel of 9 
positive and 5 negative acute phase response (inflammatory) proteins, allowing longitudinal 
analysis of inflammation markers associated with major and minor infections, influenza 
vaccination, recovery from hip-replacement surgery and Crohn’s disease.  The results illustrate 
complex time-dependent “biomarker trajectories” on multiple timescales and provide a basis for 
detailed personalized models of inflammation dynamics.  The striking stability of most 
biomarker protein levels over time, combined with the convenience of self-sampling and low 
cost of multiplexed measurements using mass spectrometry, provide a new window into the 
temporal dynamics of disease processes.  The extensive results obtained using this high 
throughput approach offer a new source of precision biomarker ‘big data’ amenable to machine 
learning approaches and application to more personalized health monitoring.  
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Introduction 
Most important events in human health unfold as quantitative changes that occur on 

timescales of hours, days, months and years.  Modeling, classifying and predicting such changes 

in individuals is a central goal of personalized medicine, and requires access to longitudinal 

measurements of important molecular parameters (i.e., biomarkers) before, during and after 

health- and disease-related events.  Unfortunately, current biomarker approaches grossly 

undersample these dynamic events, providing only a low-resolution picture of health and disease 

at the molecular level.  While advances in wearable sensors [1], coupled with developments in 

machine learning [2], have triggered an explosion of interest in the potential of “big data” to shed 

light on health problems [3], the application of this approach to track events at the molecular 

level has been limited by the scarcity of dynamic readouts of the body’s internal molecular 

sensors, represented, for example, by the levels of biomarker molecules (principally proteins) in 

the blood.  Although more than 100 clinical laboratory tests are available to measure specific 

blood protein biomarkers [4], such tests are typically used one at a time and only when an 

immediate medical diagnostic need justifies the cost.  As a result, there is a paucity of protein 

biomarker data measured in individuals at frequencies matching the dynamics of health events, 

and even less data using panels of biomarkers that cover multiple aspects of a person’s 

physiology. 

To fill this gap we sought to develop a practical approach to obtain precise measurements 

of blood biomarkers at high frequency and low cost, using samples that can easily be collected 

by subjects themselves at any time and any place: dried blood microsamples.  In the work 

described here we demonstrate the use of such a method measuring pre-selected health-relevant 

proteins by SISCAPA immuno-mass spectrometry [5] in conventional dried blood spot (DBS) 

samples collected on filter paper cards over spans of years, including extensive periods of daily 

collection.  While this approach could be considered excessive in the context of most routine 

diagnostic applications, it has enormous potential value when applied to specific periods of time 

during which significant health events are anticipated: e.g., disease progression studies, clinical 

trials, surgery, or pre-arranged changes in medication, lifestyle or diet [6].  

Dried whole blood samples, in the form of DBS on filter paper cards, have been used as 

clinical samples since the pioneering studies of Guthrie [7] on inborn errors of metabolism, and  
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have slowly gained acceptance for a few narrow applications in epidemiological studies, 

pharmaceutical trials and direct-to-consumer testing.  However, the widespread use of DBS as an 

alternative to conventional phlebotomy has been limited by the difficulty of determining the 

serum- or plasma-equivalent volume present in a given area of filter paper (typically a circular 6 

mm diameter punch) excised from the dried blood spot.  The blood volume in a standard filter 

paper punch can vary by +/- 10-15%, while the fraction of this blood consisting of plasma can 

also vary significantly (~30-60%) as a function of the sample hematocrit. These sources of 

variation have impeded an accurate determination of a sample’s equivalent input plasma volume, 

which is necessary to calculate plasma concentration from a measurement of the amount of 

analyte in the DBS punch.  In response to this perceived need and the recent uptick in interest in 

wider application of dried blood samples, a number of collection devices are being developed 

that aim to reduce this blood volume uncertainty through volumetric measurement prior to 

sample drying, and ultimately perhaps achieve plasma volume precision as well through use of 

an integrated plasma separation step.  We have addressed this issue in a different way via a 

personalized normalization strategy that is compatible with both existing DBS cards and novel 

devices.  To do this we employ a normalization method based on measurements of a small set of 

plasma proteins that remain relatively unchanged over time in an individual, and show that this 

strategy significantly reduces the variation observed in other proteins in sets of DBS samples.  

The result is a system that provides blood protein measurements with precision comparable to 

conventional clinical assays performed on standard venipuncture samples. 

To measure panels of selected blood proteins in DBS we used stable isotope standards 

and capture by anti-peptide antibodies (SISCAPA; [5,8]).  This  technology involves tryptic 

digestion of samples followed by immuno-affinity enrichment of surrogate proteotypic peptides 

coupled with peptide quantitation using liquid chromatography-multiple reaction monitoring 

(LC-MRM) mass spectrometry [9].  Tryptic digestion overcomes the effects of sample drying 

and essentially converts large molecules (proteins) into smaller peptides amenable to precise 

MRM quantitation, while SISCAPA peptide enrichment eliminates most sample matrix, 

improves sensitivity and throughput and enables measurement of proteins present in widely 

disparate (>106-fold ) concentrations in the same multiplex assay.  In the work reported here we 

measured a series of 26 biomarker proteins selected to track multiple aspects of human health 

and disease, including inflammation, coagulation, lipoprotein metabolism, kidney function and 
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iron metabolism. In addition, several selected proteins were measured as surrogates for blood 

cell counts (erythrocytes, leukocytes and neutrophils, the most abundant class of leukocytes].  

Our targeted approach focuses on precise measurement of selected proteins with known clinical 

significance [4] rather than a broad survey covering hundreds of candidates [10–13] (the 

objective of classical biomarker proteomics), thereby improving throughput, precision, 

robustness, sensitivity and cost at the expense of potential for de novo biomarker discovery.  The 

precision and throughput of this approach facilitate detection of small quantitative changes in 

large sample sets, thereby enabling high-frequency longitudinal biomarker studies as described 

here, while the robustness and sensitivity of established clinical applications [14,15] provide a 

straightforward path to clinical implementation. 

Inflammation events provide perhaps the best illustration of a broad pattern of recurring 

large-amplitude biomarker variation in humans.  In clinical contexts, inflammation is usually 

measured using the blood biomarker C-reactive protein (CRP; [16]) a key component of the 

adaptive immune system.  Quantitative tests for CRP are widely used in laboratory medicine, and 

the results have clinical significance over a large dynamic range: increases of more than 100-fold 

occur in major infections [17], while much smaller increases (<2-fold) are associated with 

elevated cardiovascular disease risk [18].  Use of any single biomarker for such a complex 

system relies on the assumption that inflammation is a relatively homogeneous response 

governed by familiar regulatory mechanisms [19] and operating similarly in most individuals in 

response to inflammatory triggers.  In fact, the concentrations of many other plasma proteins also 

change in response to inflammation, including cytokines (short-lived, low-abundance proteins 

regulating inflammatory responses) and a broad set of acute phase response (APR; [20]) proteins 

associated with many functions.  While cytokines such as interleukin-6 (IL-6) are occasionally 

used as clinical diagnostic tests and have been measured in DBS [21], they typically appear 

briefly, serving as signals initiating an inflammatory process [22], and at very low concentrations 

(low pg/mL; ~ 105-fold lower abundance than APR proteins).  In this manuscript, we focused on 

the APR proteins to track inflammatory events with timescales ranging from days to months.  

These included serum amyloid A (SAA; see Table 2 for complete list of protein abbreviations), 

LPS-binding protein (LPSBP), mannose binding lectin (MBL), alpha-1-acid glycoprotein 

(A1AG; orosomucoid), haptoglobin (Hp), fibrinogen (FibG) and complement C3 (all of which 

are components of the positive APR whose plasma levels increase in response to inflammation)  
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and albumin (Alb), transferrin (Tf), hemopexin (Hx) apo A-I lipoprotein (ApoA1), and IgM 

(which are components of the negative APR whose plasma levels decrease in response to 

inflammation).  

Increases in CRP are observed in connection with infections [23], arthritis [24], surgery 

[25], sleep apnea [26], depression [27], Parkinson’s disease [28], pregnancy [29], inflammatory 

bowel disease [30] and cancer [31], to name a few examples.  In each of these cases, increased 

inflammation is associated with poorer outcome, but the increase (as currently measured via 

CRP) is not disease-specific.  Because of this lack of disease specificity and the assumption that 

CRP alone is sufficient to track inflammation, few data are available on the detailed dynamics of 

multiple APR proteins in specific disease situations or in individuals outside small research 

studies. To obtain a more complete picture, we selected the panel of APR proteins that includes 

molecules involved in both innate (SAA, CRP, LPSBP, MBL) and adaptive immune responses 

(IgM) and proteins involved in drug transport (Alb, A1AG), iron scavenging and transport (Hp, 

Hx), the complement cascade (C3), coagulation (FibG) and lipid metabolism (ApoA1) to 

monitor inflammation’s impact on multiple systems, of interest on timescales from acute to 

chronic.   

The results presented here illustrate the complex and informative behavior of APR 

proteins in tracking inflammation due to multiple causes over many orders of magnitude.  Most 

important, the data reveal the practicality of major improvements in diagnostic test interpretation 

using personalized baseline values and the feasibility of personalized multiparameter biomarker 

response models useful in tracking a variety of planned health interventions, e.g., clinical trials.  
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Results  

Human Blood Samples, SISCAPA analysis and DBS sample normalization 

A unique set of 1,522 longitudinal DBS samples was collected on Whatman 903 cards by 

8 participants between 2008 and 2017 and included extensive periods of daily sampling (Table 

1).  Biomarker proteins selected for clinical relevance to inflammation and chronic disease 

(Table 2; including protein abbreviations used throughout) were measured in punches taken from 

the DBS cards using an automated, multiplexed SISCAPA protocol [5,32] in three tranches as 

described in Materials & Methods.  Protein amounts were determined by mass spectrometry and 

expressed as femtomole per sample punch. 

 

Subject 
Age 
(yr) Sex 

Overall 
health 20

08
 

20
09

 

20
10

 

20
11

 

20
12

 

20
13

 

20
14

 

20
15

 

20
16

 

20
17

 

Total 
samples 

Span 
(days) 

S-01 62 F Good   7 17       24 17 54 67 186   2,791  

S-04 71 F Good           10 15 43 52 130 250   1,647  

S-07 55 M Good           18 31       49      393  

S-10 37 M Crohn's              49 52 183   284 
      

852  

S-17 32 M Good         2 28 19 19 19   87  1,415  

S-18 69 M Good 14 12 6 52 22 31 50 52 48 124 411  3,292  

S-20 47 F Good           21 24       45     390  

S-22 72 M Good           99 29 40 42   210   1,224  

   Total 14 19 23 52 24 207 241 223 398 321 1,522 12,004 
 

Table 1.  Description of samples 

 

Variations in the volume of blood sampled in a DBS punch have historically limited the 

precision of DBS measurements of biomarkers.  Theoretically this volume is ~14 μL of whole 

blood in the case of a 1/4” (~6mm) diameter circular punch from a Whatman 903 card, but in 

practice this amount can vary by +/- 10-15% due to a number of factors such as hematocrit, 

viscosity and chromatographic effects that are often poorly controlled [33].  In order to overcome 

this limitation, we developed a novel method for normalizing the blood volume in longitudinal 

DBS punches from an individual, with the objective of maximizing assay precision when 

comparing serial samples against personal baselines.  The method uses a sample-specific scale 
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factor computed from an equally-weighted combination of three proteins (albumin, hemopexin 

and IgM) whose abundances are usually very stable within individuals over time and which, 

when they do vary under extreme circumstances (e.g., major inflammatory events), typically 

counterbalance one another.  The calculated scale factors applied to individual longitudinal DBS 

spots in this study fell in the range of 0.7-1.3 as expected, with an overall CV of 16.2%.  

Duplicate measurements of the scale factor in Dataset C (determined when measuring the first 

plex vs the second plex - i.e., tryptic digestion of a single sample followed by separate sequential 

SISCAPA captures and LC-MRM measurements) showed very good agreement and were related 

by a slope of 0.99 and R2 of 0.98. 

Precision of SISCAPA-LC-MRM measurements in dried blood spots 

Replicate standard samples dried on Whatman 903 filter paper were included in each 96 

well plate processed for SISCAPA measurement, normalized using the above methods and used 

to evaluate the precision of each assay in each dataset.  The average coefficient of variation (CV) 

across the assays used in Datasets A, B and C were 7.4%, 6.0% and 4.9% respectively, consistent 

with expectations for clinically useful assays.  CVs were typically somewhat higher in Datasets 

A and B, which were analyzed earlier in the process of assay optimization.  In Dataset C the CV 

over all 26 peptides measured in two successive multiplex enrichments from 4 replicate dried 

blood standards in each of nine 96-well plates (72 measurements) was reduced from 10.2% prior 

to volume normalization to 4.6% after normalization (Supplementary Table 1).  Similarly, the 

overall average CV in Dataset A was reduced from 9.4% to 7.4% by normalization.  In Dataset 

B, normalization had little effect (6.5% vs 6.1%) because in this case the standards were 

prepared by drying the same measured volume of whole blood onto pre-cut Whatman 903 filter 

paper disks in wells, such that there was little or no volume variation to correct.  In Dataset C, a 

number of proteins including apolipoprotein A1 (Apo A-I) and apolipoprotein B (Apo B), 

insulin-like growth factor 1 (IGF-1) and transferrin, in addition to the normalizing triad 

(albumin, hemopexin and IgM), yielded CVs of ≤ 2.5% in the replicate standard samples.  Key 

inflammation markers such as C-reactive protein (CRP), serum amyloid A (SAA) and 

lipopolysaccharide binding protein (LPSBP) showed normalized CVs in the standard samples of 

3.3% - 3.7%.  The positive effect of volume normalization significantly smoothed plots of most 

proteins across longitudinal sample sets as expected (Supplementary Figure 1).



  

 

    Dataset 
Protein Clinical Relevance Abbreviation Peptide A B C1 C2 
Alpha-1-acid glycoprotein (orosomucoid) APR A1AG NWGLSVYADKPETTK 1  1  
Albumin Normalization, APR Alb LVNEVTEFAK 1 1 1 1 
Apo A-I lipoprotein Lipoproteins ApoA1 (AKP) AKPALEDLR   1  
Apo A-I lipoprotein Lipoproteins ApoA1 (ATE) ATEHLSTLSEK 1   1 
Apo B lipoprotein Lipoproteins ApoB (FPE) FPEVDVLTK 1   1 
Apo B lipoprotein Lipoproteins ApoB (TEV) TEVIPPLIENR   1  
Apo C-III lipoprotein Lipoproteins ApoC-III GWVTDGFSSLK    1 
Apo E lipoprotein Lipoproteins ApoE VQAAVGTSAAPVPSDNH 1   1 
Antithrombin III Coagulation ATIII VAEGTQVLELPFK 1   1 
Complement  C3 Complement, APR C3 IHWESASLLR 1  1  
C-reactive protein APR, Inate immunity CRP ESDTSYVSLK 1 1 1  
Cystatin C Kidney function CysC ALDFAVGEYNK 1  1  
Fibringen gamma chain Coagulation, APR FibG YEASILTHDSSIR 1   1 
Hemoglobin beta chain Hct, Normalization HbA VHLTPEEK 1 1  1 
Hemoglobin beta glycated Metabolic syndrome HbA1c V[+162]HLTPEEK     
Haptoglobin Fe metabolism, APR Hp VTSIQDWVQK 1 1 1  
Hemopexin Fe metabolism, APR Hx NFPSPVDAAFR 1 1 1 1 
Insulin-like growth factor 1 Growth, diet IGF-1 GFYFNKPTGYGSSSR 1  1  
Immunoglobulin G, all isotypes Immune response IgGall NQVSLTC[CAM]LVK    1 
Immunoglobulin M Immune response IgM YAATSQVLLPSK 1 1 1 1 
L-plastin Leukocyte count L-Plastin AAC[CAM]LPLPGYR    1 
LPS-binding protein APR, Inate immunity LPSBP LAEGFPLPLLK 1 1 1  
Mannose binding lectin APR, Inate immunity MBL EEAFLGITDEK 1 1 1  
Myeloperoxidase Neutrophil count MPO DYLPLVLGPTAMR 1 1 1  
Plasminogen Coagulation Pla LSSPAVITDK 1   1 
Serum amyloid A APR, Inate immunity SAA GPGGVWAAEAISDAR 1 1 1  
Soluble transferrin receptor Fe metabolism, sTfR GFVEPDHYVVVGAQR  1  1 
Transferrin Fe metabolism, APR Tf EGYYGYTGAFR  1  1 
Tissue inhibitor of metalloproteinase 1 Cardiovascular TIMP1 GFQALGDAADIR 1    
von Willebrand factor Coagulation vWF HIVTFDGQNFK 1    

    22 12 15 15 
 

Table 2. Proteins and peptides measured in the 3 datasets.  A single proteotypic tryptic peptide (sequence unique to the target) was 
measured as a surrogate for each protein, except for ApoA-I and ApoB lipoproteins for which 2 peptides were measured in some 
cases.  Columns A, B and C refer to the three datasets (C1 and C2 are the two sequentially-measured multiplex panels into which the 
Dataset C panel was divided), and a value of 1 indicates the protein was measured in the corresponding dataset. 



  

 

The sample sets contributed by the 8 subjects each produced a tight cluster of points in a 

plot of IgM vs. Hx (Figure 1), demonstrating the stability of both the DBS samples and the 

analytical approach.  The 8 subjects can be clearly differentiated from one another using only 

these two parameters and in fact most of the APR proteins measured showed significant inter-

individual difference (Supplementary Figure 2).  Subjects S-04 and S-18 (of opposite sex, 

contributing 411 and 250 samples respectively) share a living environment but their biomarkers 

appear as completely separated clusters, indicating that most of this between-subject variation 

observed is not determined by environment at the time of collection.  In general, points diverging 

from the cluster centroids are associated with major inflammation events. 

 

 
 

Fig. 1.  A plot (log-log) of IgM vs Hx values for all 1522 samples, marked by subject. 

 

Personalized baselines and standard deviations 

The largest perturbations observed in most proteins occurred during inflammatory events 

that were noted by the study subjects and were coincident with increases in the acute phase 

reactants CRP and SAA.  In order to calculate personal “normal” baseline levels for each 

biomarker protein that excluded inflammation events, we identified, for each subject, the subset 

of samples with CRP below a cutoff that was set at the personal median CRP value across all of 
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a subject’s samples; i.e., selecting the half of each subject’s samples with lowest CRP values.  

For each protein, the average value in these low-inflammation baseline samples was taken as the 

subject’s personal baseline and the standard deviation in these samples allowed calculation of a 

personal baseline CV.  The average baseline CV over all subjects, samples and proteins was 

12.3% (12.4%, 17.0% and 10.2% in Datasets A, B, and C respectively) compared to 38.0% 

(39.2%, 68.7% and 31.3% in Datasets A, B, and C) for combined baseline and non-baseline (i.e., 

all) samples (Table 3).  On average, the ratio of assay CV (from replicate standards) to average 

subject baseline CV (from subjects’ longitudinal samples) was 0.52, satisfying the criterion 

(<0.6) allowing statistically meaningful analysis of within-subject biological variation [34].  In 

subject S-22 CRP and SAA showed maximum increases of up to 497- and 1,062-fold (equivalent 

to 2,673 and 3,688 personal standard deviations) respectively, above personal baselines, 

illustrating the >1,000-fold dynamic range of statistically significant (>2 SD) within-person 

changes. 
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Table 3.  Coefficients of variation of protein measurements (%CV) in all three datasets 
separately and in combination (merged).  CVs in Standard samples (workflow analytical CV), 
subject baseline data (averaged over subjects) and all subject data (including inflammation 
events) are separately tabulated. 

 

Correlations among inflammation biomarkers 

Protein:protein correlation matrices were calculated to help uncover relationships among 

the inflammation–associated biomarkers.   Figure 2 shows the correlation matrix obtained using 

all 1,522 subject samples after volume normalization (using Alb, Hx, IgM) and an additional 

normalization step (division by each subject’s personal median value for each protein) to reduce 

the impact of inter-individual differences.  A set of proteins at the upper left (Area A: CRP, 
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A1AG 8.6       11.3      27.9      4.7       6.8       22.3      10.3      24.5      
Alb 1.9       3.3       4.5       5.7       6.7       6.9       1.9       2.9       3.4       4.1       4.8       
ApoA1 (AKP) 1.5       5.6       6.5       5.5       6.5       
ApoA1 (ATE) 4.6       8.3       11.1      6.5       8.5       9.1       8.9       11.2      
ApoB (FPE) 2.4       8.4       9.3       2.4       7.1       8.6       8.1       9.6       
ApoB (TEV) 2.8       6.7       7.9       6.6       7.9       
ApoC-III 4.2       15.4      16.4      15.5      16.4      
ApoE 5.5       11.7      13.6      11.7      13.6      
ATIII 9.4       19.4      20.3      9.6       23.1      22.5      20.4      21.2      
C3 2.3       7.0       10.6      5.5       5.4       9.0       7.0       10.0      
CRP 13.1      18.6      216.4    6.8       29.8      232.9    3.3       15.0      197.6    21.6      260.5    
CysC 6.1       10.4      11.2      3.5       10.7      12.0      10.9      12.1      
FibG 5.3       8.9       19.5      4.3       11.8      18.4      10.0      17.9      
HbA 5.6       10.6      10.5      7.0       12.7      12.6      4.9       11.7      11.9      12.0      11.7      
Hp 9.4       15.6      28.0      5.5       16.7      27.0      9.4       15.6      27.3      16.1      28.9      
Hx 1.4       2.9       4.0       3.0       5.3       6.4       1.5       2.7       3.7       3.5       4.6       
IGF-1 19.8      23.0      25.1      2.0       8.1       10.4      21.1      23.3      
IgGall 5.8       8.2       8.6       8.2       8.6       
IgM 2.6       3.8       4.5       4.6       7.7       7.2       2.1       3.4       3.8       4.7       5.1       
L-Plastin 5.0       15.1      17.8      15.1      17.8      
LPSBP 6.5       10.8      42.1      6.2       26.9      35.8      3.7       7.4       34.7      14.6      40.5      
MBL 7.8       14.9      19.4      11.2      23.4      22.1      12.1      18.2      22.2      17.9      20.4      
MPO 13.1      24.9      35.8      5.5       24.6      27.1      9.7       20.1      31.5      24.3      34.8      
Pla 2.8       4.8       5.3       5.0       5.1       6.0       5.4       5.7       
SAA 8.8       21.9      304.1    4.8       30.9      426.1    3.7       18.4      289.1    25.9      430.5    
sTfR 10.4      11.5      7.1       9.0       9.1       9.3       9.6       
Tf 8.6       8.6       2.5       3.7       4.3       4.7       5.1       
TIMP1 8.2       11.9      15.5      11.9      15.5      
vWF 18.2      21.0      23.9      21.0      23.9      

Average 7.4       12.4      39.2      6.0       17.0      68.7      4.8       10.2      31.3      12.3      38.0      

Dataset A Dataset B Dataset C Merged Datasets
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LPSBP, SAA, A1AG, Hp, C3, MBL and FibG), together with normalizing protein Hx on the 

right, exhibit strong positive mutual correlations: all of these are classical positive acute phase 

reactants.  A set of strong (Alb, Tf, ApoA1 and ApoC-III) and weaker (IgM and IgGall) negative 

acute phase reactants are anti-correlated with the positive APR (particularly with Hp, whose slow 

time course most closely resembles the slow time course of the negative APR).  The observed 

correlations among acute phase proteins are common to the individual subjects (Supplementary 

figure 3) and feature very close correlations between CRP (the primary clinical inflammation 

marker) and SAA (pairwise correlation of 0.89 across all the data) or LPSBP (pairwise 

correlation of 0.84).   

 
Fig 2. Protein:Protein correlation matrix.  A matrix describing correlation of variation in each 
protein to the others, calculated over all samples from all subjects after sample volume 
normalization and division by personal baseline average values (to minimize the impact of  
subject:subject differences in protein amount).  A): acute phase response proteins; B): cluster 
related to coagulation and blood viscosity; C) lipoproteins; D) proteins used in volume 
normalization. 
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Similar correlation results were obtained using only the half of each subject’s samples 

with the lowest CRP (i.e., in the baseline low-inflammation data; Supplementary figure 4), 

except that correlations and anti-correlations among the acute phase reactants are significantly 

reduced due to the removal of all prominent inflammation events from the data.  Nevertheless, 

the correlations between CRP and SAA or LPSBP remained positive and significant in the 

baseline (low CRP) samples (0.30 and 0.31 respectively), clearly demonstrating that low-level 

fluctuations in these proteins contain biological signal.  This persistent correlation (indicative of 

coregulation) among the acute phase proteins in the low-inflammation data appears clearly in 

scatterplots plots of CRP vs SAA and LPSBP (Figure 3, showing data from the five subjects who 

contributed most samples).  During inflammatory events, where CRP varies by 100-fold, the 

SAA response was consistent across subjects, increasing by up to 1,000-fold over baseline.  

LPSBP levels increased similarly, but the observed increase was less than 10-fold at maximum.   

 

 
 

Fig 3.  Relationship between CRP and SAA or LPSBP.  Scatterplots (log-log) relating CRP to 
SAA or LPSBP in the individual samples (dots) contributed by 5 subjects.  Baseline samples (the 
half with lowest CRP) are shown in orange, and the higher half of samples in blue.  All values 
were normalized by the personal average of the baseline samples. 
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Other large-scale features of the correlation data (Figure 2) include a second block of 

correlations (B) comprised of AT-III, HbA, L-plastin, MPO and FibG, in which AT-III is 

negatively correlated with the other members.  A third block (C) is comprised of the 

apolipoproteins (Apo A-I, Apo B and Apo C-III), in which the measurements of pairs of peptides 

from the same protein (i.e., Apo B TEV and FPE peptides, or Apo A-I AKP or ATE peptides) 

showed the expected very strong correlations (0.79 and 0.76 across all subjects and samples).  A 

fourth block (D) is comprised of the triad Alb, IgM and Hx, whose mutual anti-correlation is 

primarily driven by their use in normalizing plasma volume in the DBS samples.   

 
 

Fig 4.  CRP inflammation events.  Inflammation events identified among the CRP measurements 
(y-axis; log scale) for 5 subjects. Event samples are distinguished by different colors and 
symbols; remaining samples are shown as green dots. 

 

Inflammation events 

Among the 5 subjects for which extended (>150) longitudinal sample series were 

available, we identified 58 inflammation events in which CRP, the primary clinical indicator of 

inflammation, was increased significantly above baseline levels in multiple samples collected 
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over a brief interval allowing identification of a temporal maximum (Figure 4).  Of these events, 

about half (26 events) included at least one sample in which CRP was increased by more than 

10-fold above baseline and all were confirmed by coordinated increases in CRP, SAA and 

LPSBP.  In contrast to the large increases seen in SAA and CRP in these events, the remaining 

APR proteins (LPSBP, A1AG, Hp, MBL, FibG, C3 and Hx) showed much smaller effects, with 

fold-increases relative to baseline ranging from 0.036 (LPSBP) to 0.002 (Hx) as great as the 

fold-increase in CRP.  Inflammation events occupied a significant proportion of the total sample 

series: the proportion of samples in which CRP is more than 2-fold higher than the personal 

baseline ranged from 12-45% among these 5 subjects (Supplementary Table 2).   

Among the events captured in these samples there are clear examples of at least three 

causes of acute inflammation.   

 

Surgery 

Subject S-04 underwent an elective total hip arthroplasty involving a short (~2 hr) 

surgical intervention and subsequent recovery period of 97 days during which daily (or more 

frequent) samples were collected (Figure 5).  Following an initial rise immediately following 

surgery, inflammation markers (here plotted on log scales), declined at different rates until day 

55, by which point the levels approached a new baseline approximately 50% below the pre-

surgery level.  The pre-surgery levels were somewhat higher than those in the immediately 

preceding period, possibly due to the required suspension of analgesics before surgery.  CRP and 

SAA were induced much more strongly than other inflammation indicators (with maximum 

inductions of 113- and 136-fold respectively).  The magnitudes of the observed responses (in 

fold-change from personal baselines) were: SAA > CRP >> LPSBP >FibG, Hp, A1AG > MBL, 

C3 > Hx (136, 113, 5.4, 3.0, 2.9, 2.7, 2.0, 1.8, and 1.2-fold respectively), overall a ~500-fold 

range of responses relative to personal baselines.  In the period between days 8 and 30, a series 

of post-surgical jumps in SAA and CRP (e.g., days 9, 18 and 22) indicated renewed 

inflammatory activity that generally coincided with increased requirement for pain medication 

and subject reports of strain in the surgical area, followed by smooth declines to baseline.   

Figure 6 shows the time course after surgery of 9 acute phase proteins normalized to the 

same peak response and smoothed in order to reveal relative peak times.  LPSBP achieved its 



16 

 

peak level first (~1.2 days post-surgery), followed by SAA, CRP, A1AG and MBL, Hp ,Fib G, 

Hx and C3, with the last peaking approximately 5 days post-surgery.  

 
Fig 5.  Inflammation related to surgery.  Amounts of 5 inflammation proteins (log scales) over 
100 days including a total hip artheroplasty and an upper respiratory infection (upper panel) 
and requirement for pain medication associated with the surgery (lower panel). 

 

The difference in timing between earlier and later-peaking inflammation markers can be 

used to visualize an inflammatory response trajectory in two dimensions, from baseline, through 

injury and returning to baseline [35].   Figure 7 shows such a trajectory plotting SAA (fast 

response, up to 137-fold above baseline) vs. Hp (slow response, maximum at 1.77-fold above 

baseline) in 85 successive DBS samples over 80 days.  The large red loop tracks progress 

(counterclockwise) from surgery (indicated by a yellow +) through initial healing (day 8), 

followed by a period of re-inflammation (days 10-27; orange, coincident with increased use of 

pain medication) and recovery to baseline (day 60; blue).  
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Fig 6.  Relative timescales of inflammatory protein responses to surgery.  Amounts of 9 
inflammation proteins over 10 days including a total hip artheroplasty, with each protein 
normalized to approximately the same scale of change in order to illustrate differences in 
timecourse. 

 

 
Fig 7.  Loop plot of inflammation timecourse.  A plot of SAA vs Hp (each normalized by their 
respective average values in baseline samples, SAA on log scale, Hp linear), with successive 
time points linked by lines to form loops.  Time is represented by line color (deep red at the time 
of surgery grading smoothly to blue 75 days later), a steady decrease in line width over time,  
and by numbers (days post-surgery).  The time of surgery is indicated by a yellow star. 
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Infection 

Infections of various kinds constituted a second major driver of inflammation events.  

Figure 5 includes such an event (an upper respiratory tract infection perceived by the subject as a 

“nose cold”) on day 62 following surgery.  While the overall magnitude of the biomarker 

response in this case was roughly 10% as great as the response to surgery, the kinetics of the 

relative increases of the 5 proteins shown were similar, rising rapidly within 1-2 days and 

declining to baseline within 10 days.  In Figure 7, the infection appears as a response trajectory 

in the bottom center of the plot (blue loop beginning and ending in the cloud of points at the 

baseline; also traversed counterclockwise as described above). 

 
Fig. 8.  Loop plots and timecourses of major inflammation events.  Seven major inflammation 
events and two influenza vaccinations in 5 subjects involving SAA increases >100-fold from 
baseline.  A) SAA vs Hp counterclock-wise loop plots (log-log).  Samples not consider part of an 
event are plotted in green.  Numbered loops in various colors correspond to events in B, which 
show the timecourses of 8 acute phase proteins (in fold-change from personal baseline average, 
log scale) as a function of days from maximum SAA. 

 

 Figure 8 shows loop and time course plots for 7 significant infections occurring in 5 

subjects, each involving SAA increases >100-fold from personal baseline median values.  These 

events were reported by subjects as: respiratory infection (S-01 E7; i.e., event 7 in subject S-01); 
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respiratory infections (S-04 E2, E3 and E7); food poisoning (S-10 E11); pneumonia (confirmed 

by X-ray) (S-18 E6); and kidney infection (S-22 E2).  None of the infections required 

hospitalization, though in some cases antibiotics were administered.  The events show a striking 

consistency among subjects in the maximum relative induction levels of SAA in major 

infections, but significant differences in the time evolution of the responses (i.e., differences in 

the shape of the response loops).  Subject S-18, with the largest sample series, exhibited a 

number of similar smaller loops (below the large event 6 loop) that were described as “nose 

colds” and have a remarkably consistent size and structure, likely indicating a reproducible 

response to similar infectious agents (e.g., rhinoviruses). 

Despite the high correlation between CRP and SAA responses, the relationship between 

the maximum levels achieved by CRP and SAA levels was clearly non-linear.  An examination 

of the set of events (Figure 9A) in which a local maximum was determined (i.e., for which 

samples were available with lower levels just before and after a maximum) shows that SAA’s  

maximum induction relative to baseline exceeds CRP’s for the highest level events, but CRP 

achieves higher levels of induction than SAA for the smaller events.  This relationship can be 

modeled by a power fit (Figure 9B) in which SAA is related to CRP raised to a power between 

1.31 and 1.52, except for subject S-10 for which the power is 1.75.   

Influenza vaccination 

Two subjects collected daily samples in periods that included a vaccination against 

influenza (Fluzone™ high dose 2017).  Inflammatory responses (Figure 9B; S-18 E20 and S-04 

E9) in SAA and CRP were measurable (2.2- and 1.3-fold increases in SAA from respective 

personal baselines), but were ~100 x smaller than those associated with major infections.  Of the 

58 identified inflammation events, 41 involved SAA increases larger than 2.2-fold (i.e., a greater 

response than either of these 2 vaccination events).  



20 

 

 
Fig 9.  Non-linear relationships between CRP and SAA in response to inflammation. A) 
Bargraphs showing the maximum fold-increase (log scale) from baseline for SAA and CRP in a 
series of inflammation events.  B) The same events aggregated for each subject (log-log) and 
fitted with a power model. 

 

Crohn’s disease 

Subject S-10 has severe Crohn’s disease and has diligently explored dietary and other 

measures to control symptoms.  Over a period of ~2.5yr, CRP and SAA levels were substantially 

elevated on numerous occasions (Figure 5).  Overall, CRP was above 2 times the median 

personal baseline value in 48% of the individual’s samples, a significantly higher proportion than 

exhibited by the other subjects (Table  4, Figure 10).  A large majority of these samples were 

collected on a regular weekly (early samples) or daily (later samples) basis, decreasing the 

likelihood of biases in timing.  Over the period of sample collection, S-10 reported success in 

significantly reducing the frequency and intensity of gut inflammatory events, and remarkably, 

this was reflected in the significant downward trend in CRP and SAA, reduced intensity of CRP 

spikes and a progressive decline (almost 3-fold) in Hp, a slowly-responding acute phase protein 

(Figure 11).   
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Fig 10.  Distribution of personalized CRP values for 8 subjects. Histograms of CRP values (fmol 
divided by average personal baseline, linear scale focusing on low level variation around 
baseline) showing greater prevalence of higher levels in Subject S-10 (Crohn’s patient). 
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Fig. 11. Variation and long-term decline of inflammation markers in subject S-10. Trajectories 
of declining acute phase markers CRP, SAA and Hp as a patient brings Crohn’s disease 
symptoms under control.  Spike near day 800 corresponds with food poisoning. 

 

Protein changes secondary to APR protein changes 

While the acute phase response showed broad similarity across many infection events in 

the 8 subjects, episodic responses were observed for MPO and IgM.  When measured in whole 

blood, MPO serves as a surrogate for the neutrophil count (there being much more MPO in the 

granules of neutrophils present in a volume of blood than in the associated plasma).  In 8 

inflammation events, increases in MPO preceded the induction of the early inflammation 

markers such as LPSBP and SAA (Supplementary Figure 5). Instead of a smooth increase and 

decline shown by the acute phase proteins, MPO exhibited a zig-zag profile with 2-3 days 

between peaks during persistent infections, perhaps indicative of the hematopoietic cycle time 

required to produce successive waves of neutrophils in the bone marrow [36]. 

In contrast, IgM, the dominant early component of the adaptive immune system, showed 

remarkably stable levels interrupted by significant increases after 3 of the infection events 

(Supplementary Figure 6) and decreases during most others (where IgM acts as a negative acute 

phase reactant).  In two cases (S-10 E11 and S-18 E6, identified as food poisoning and 

pneumonia respectively) IgM increased temporarily by ~50% beginning ~8 days post-event and 

then returned to precisely the pre-event level.  In a third case, S-01 E7, the increase in IgM was 

~30%.  In S-10 E11, where daily samples were available, IgM declined to baseline in ~15 days, 

somewhat faster than would be expected based on our measurements of the IgM half-life (~17d; 

[37]).  No increases in IgG levels (measured as IgGall, the total of all 4 isotypes) were observed. 
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Discussion  
Precise measurements of protein biomarker panels in self-collected longitudinal DBS 

samples enables important new opportunities in precision medicine and personalized health 

monitoring.  Here we demonstrate such an approach and describe results obtained using a set of 

1,522 DBS samples collected by 8 individuals over intervals of up to 9 years, including extended 

periods of daily sampling.  In these samples we measured panels of up to 27 clinically significant 

proteins using an automated SISCAPA-LC-MS workflow [5] and normalized the results to 

personal baselines.  As a first step in understanding the major sources of longitudinal biological 

variation in the human blood proteome, we characterized the strongest driver of change in 

normal individuals: the acute phase response to inflammation.  Given the wide range of proteins 

and timescales (hours to years) involved in this variation, we conclude that conventional 

biomarker measurement approaches seriously undersample clinically-relevant biology and thus 

fail to capture important aspects of health, disease and treatment.  Having a practical approach 

for tracking multiple protein biomarkers at daily (or higher) frequency will overcome this 

limitation, providing dynamic molecular readouts that can bridge the current gap between the 

static molecular picture provided by genomics and the dynamic but macroscopic data stream 

generated by wearable devices. 

DBS-SISCAPA-LC-MS measurement platform 

In order to establish dried blood microsamples (e.g., DBS) as a useful alternative to 

conventional phlebotomy and thereby to enable high-frequency longitudinal tracking of blood 

biomarker panels, a number of issues must be addressed.  These include practicality of frequent 

sample collection; analytical performance limitations (sample stability, amount of sample 

required to measure multiple targets, availability of relevant assay panels and overall cost of 

measurement); volume normalization; and standardization/personalization of resulting data.   

DBS samples of fingerprick blood can be collected by most motivated individuals with 

much less inconvenience [38], cost [39] and risk than conventional venipuncture (venipuncture 

being considered impractical at daily frequency over extended periods outside a hospital 

environment and generally discouraged for ethical reasons, such as associated reduction of 

subject hematocrit [40]).  Diabetic patients, for example, can collect 1-5 µL of capillary blood by 

fingerprick several times each day for glucose measurement and our experience indicates that 
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with proper choice of lancets and technique, daily collection of 50-150 µL blood from a single 

fingerprick is tolerable for many subjects without injury or undue discomfort.  Advanced blood 

microsample collection devices (e.g., using application of gentle vacuum to collect capillary 

blood from the upper arm; www.7sbio.com and www.tassoinc.com) will continue to improve 

user acceptance and likely drive improvements in standardization compared to the first-

generation sample collection approach used in this work (handheld lancets and Whatman 903 

filter paper cards).  Fortunately, the act of drying whole blood samples stabilizes proteins 

(though perhaps not all small molecules) sufficiently to enable long-term storage at 4° C (as 

shown in the present results by stable baselines in samples collected over 9 years) and thus 

enormously simplifies storage of large sample sets.  In addition, because the SISCAPA workflow 

is a “bottom up” proteomics approach in which the target proteins are digested to peptides prior 

to analysis, the results are much less susceptible to protein stability issues that affect 

immunoassays.  Given these factors, the ability to collect longitudinal DBS samples does not, in 

itself, appear to be a major limiting factor now or in the future. 

Protein analysis, on the other hand, has been limited in DBS.  While numerous proteins 

of clinical interest can be measured in DBS samples [41,42], this is most frequently done with  

research-use immunoassays that measure one protein at a time, with each assay requiring a 

separate aliquot of sample and entailing a separate additional cost, thus severely constraining 

measurement of broad protein panels.  Not all existing immunoassays work well in reconstituted 

dried blood since protein epitopes critical to assay performance can be perturbed by drying and 

storage.  In addition, the lack of knowledge of the volume of plasma in each DBS punch 

interferes with determination of accurate plasma concentrations of biomarkers required to 

compare samples with high precision.  In contrast, mass spectrometry of protein-specific 

(proteotypic) peptides offers an ideal approach for measuring many proteins in DBS samples [9]: 

near-absolute structural specificity; facile, non-interfering multiplex measurement of many 

peptides; and direct analyte detection with true internal standards (a form of classical isotope 

dilution mass spectrometry frequently used to establish clinical reference methods).  A number 

of studies have applied MRM methods [43–48] to DBS, demonstrating a capability to measure 

numerous proteins with reasonable precision and limited throughput.  When directed to specific 

well-characterized peptides, a method combining MS detection with specific immuno-affinity 

peptide enrichment (SISCAPA; [5,8,32]) significantly enhances the sensitivity, throughput and 
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linear dynamic range of the approach and delivers clinical-quality results [14], making it possible 

to measure broad panels of proteins in small samples with high precision and at low cost.  Here 

we selected proteotypic peptides from 27 protein analytes for which high-affinity monoclonal 

anti-peptide antibodies are commercially available (www.siscapa.com/catalogassays).  The 

selected targets span an abundance range of ~1,000,000-fold in whole blood and include proteins 

of very high abundance (e.g., HbA and Alb) and low abundance (e.g., IGF1 and sTfR).  The 

assays are highly specific and perform equivalently in plasma or whole blood (manuscript in 

preparation), with the exception of proteins known to be present in the cellular compartment of 

blood (HbA, L-plastin, and MPO) which are much more abundant in whole blood than plasma 

and Hp which interacts very strongly with HbA.  

Interpreting DBS Results: Normalization and Personalization 

A central goal of longitudinal DBS analysis is the detection of small changes in an 

individual over time, a capability requiring very high assay precision (e.g., 2-7% CV).  

Currently, tests using DBS provide adequate results when used for qualitative analysis (e.g., in 

screening of newborns for inborn errors of metabolism) or semi-quantitative analysis (e.g., HIV 

viral load).  However, most clinical DBS applications do not attain this level of precision. This is 

due to variations in the quantity of blood contained in a DBS punch, variation in the fraction of 

this blood that is plasma (i.e., the hematocrit), differences between capillary and venous blood, 

and potential alterations in analyte amount or structure due to drying and storage can all affect 

biomarker measurements.  Despite strong interest in DBS technology [49], these concerns have 

impeded routine application in pharmaceutical research and clinical trials - areas in which 

detailed longitudinal monitoring of patient responses could be particularly useful [50].   

To address these limitations, we have developed [32] and here refined our earlier two-

stage strategy to 1) normalize plasma volume and then 2) personalize interpretation of results.  In 

the first step we sought to correct for variations in plasma volume present in each DBS punch – a 

recognized source of pre-analytic error that typically amounts to +/- 10-15% and which adds 

unacceptable error in longitudinal comparisons.  While albumin (Alb) is the largest single protein 

component of plasma and represents an obvious basis for plasma protein normalization, it is also 

a negative acute phase reactant and thus its plasma concentration is not always constant.  We 

therefore selected two additional proteins whose concentrations are remarkably stable in 

individuals over time (IgM and Hx) and which, together with Alb, form a set, in which each 
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protein generally changes by a small amount in compensating directions when major plasma 

proteome changes occur (e.g., during major inflammation events).  To normalize for volume 

variations in DBS samples, we calculated volume scale factors for Alb, IgM and Hx (for each, 

the reciprocal of the protein amount divided by the median of the protein amount in all of the 

subject’s samples) and averaged these scale factors for the three proteins.  Consistent with 

expectation, the distribution of these scale factors across all samples was characterized by a CV 

of 16.2%, which, if uncorrected, would cause individual assay CVs to substantially exceed this 

value.   

Application of the sample volume scale factor places all of an individual’s samples on an 

equivalent plasma volume basis, thus normalizing for variation in both the amount of blood in 

the DBS punch and hematocrit, and resulting in significantly lower assay CV’s.  For replicate 

standards (DBS punches prepared from the same blood sample) run over 9 days in Dataset C, 

normalization reduced the measurement CV, averaged over 27 peptides, from 10.2% to 4.8%.  A 

number of proteins not used in the normalization showed CVs below 2.5%, close to the limit 

achievable with current MRM mass spectrometry for peptides.  These CVs are generally much 

lower than most published work with DBS, in which CVs for individual protein assays typically 

range from 7-20% [41,44,45,47,51].  We attribute this improvement in precision mainly to the 

combination of highly specific immuno-affinity MS (which effectively separates the peptides 

analytes from digest matrix) and volume normalization (which has not been available in previous 

studies where appropriate normalizing proteins were not measured).  Lower CVs enable 

detection of smaller longitudinal changes, and therefore further improvements (e.g., 1% 

workflow CVs) could further improve signal-to-noise in a number of big data applications.  

Interestingly IgM and Hx, while stable within-subject, vary substantially between 

subjects (i.e., they have a high index of individuality [34]) and as a result, a simple plot of Hx vs 

IgM almost completely separates all of each subject’s samples from the others.  This is important 

evidence, which can be further improved using additional proteins, that a given sample set 

derives from a single individual despite a span of years in collection times, and provides an 

excellent tool for detecting mislabeled specimens.  In the present study this result also offers a 

useful example of the long-term stability of these proteins in DBS at 4° C. 

Two significant limitations of this plasma volume normalization approach should be 

noted.  First, it is most effective within an individual; i.e., for adjusting samples taken over time 
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from a single individual.  This is because the proteins used here for normalization include Hx 

and IgM, which vary a great deal between subjects (while remaining very stable within an 

individual).  As a result, the method has limited utility for improving comparisons between 

individuals, as required for cohort studies in a population.  A second limitation concerns 

normalization of proteins associated with non-plasma blood components; e.g., erythrocytes 

(represented here by HbA) and leukocytes (represented by L-plastin and MPO).  This is because 

plasma volume normalization does not directly address normalization of the whole blood 

volume, which is affected by blood hematocrit, or potential variations in the ratio of plasma to 

cellular components due to chromatography during spread of blood across the paper, differential 

transport during drying, etc..  We address these and other potential sources of small variations in 

plasma-to-cellular ratios in a separate publication (in preparation).  However, neither of these 

limitations proves to be a disadvantage in the personalized approach we advocate here, since it is 

based on within-person tracking of plasma protein biomarkers.   

As a second step in our analysis we personalized protein amounts in terms of fold-change 

relative to individual baseline levels, allowing each subject to serve as their own control.  This 

approach has two important advantages.  First, it facilitates detection of small changes that are 

significant in the context of the individual, but may not appear significant in the context of much 

broader population variation.  In the current laboratory diagnostic paradigm, most test results are 

evaluated against a population reference interval (the normal range defined by results from a 

population of theoretically healthy people after removing the top and bottom 2.5% of values) - a 

range that is known to be much wider than an individual’s normal variation for a majority of 

clinically interesting proteins [52]. Changes in the concentration of a biomarker that are within 

the population’s “normal” range can be very significant in the individual (i.e., far outside the 

individual’s narrower personal normal range).  The importance of this distinction has been 

demonstrated by longitudinal monitoring of cancer antigen 125 (CA125) as a predictive 

biomarker for ovarian cancer [53,54]: individual women exhibit very stable normal levels of 

CA125 over time but these levels vary widely between women.  In such a case, dramatic 

departures from an individual’s narrow personal range may still be within a much wider 

population “normal range”, preventing early detection of cancer.  While the personalized 

baseline approach is natural in the context of carefully collected longitudinal biomarker data, it 

remains very challenging in the context of many existing medical systems due to lack of 
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necessary prior test results and the considerable burden involved in moving from a one-size-fits-

all reference interval interpretation to a “complicated” personalized approach.  A much more 

limited version of this personalization concept (use of a Reference Change Value, or RCV, to 

estimate the significance of differences between sequential measurements) has been proposed 

[55] but not yet widely adopted.  

A second advantage of interpreting biomarker levels relative to personal baselines is that 

it does not require absolute calibration of each assay in terms of physical concentration (e.g., 

ng/mL or nM).  Absolute physical calibration is highly desirable from a metrological point of 

view, since, if it can be implemented, it would allow harmonization of results from different 

laboratories using different detection methods and different vendor platforms.  Such universal 

harmonization has, however, proven very difficult to achieve in practice [56] and is likely to 

remain so given growing evidence of the genetic and post-translational heterogeneity of many 

target proteins (leading to different assay responses to material from different subjects) and of 

the susceptibility of immunoassays to a range of analytical interferences [57].  Experience with 

multiplexed immunoassays suggests that the effort and complexity of absolute standardization of 

N assays carried out in the same sample at the same time is at least N-times as difficult as one 

assay (since each typically requires different calibrators, stripped matrices, purified analytes, 

etc.) and potentially much more difficult if one is to avoid using separate calibrators for each 

assay (e.g., 3N calibrators in the present case, which would occupy 3 x 27 = 81 samples of each 

96-well sample plate).  Thus while a conventional mass calibration approach is possible for 

SISCAPA panels (using methods previously demonstrated for a number of individual clinical 

SISCAPA assays [14,15,58]), a simpler alternative, based on the labeled-peptide internal 

standards used in SISCAPA and other MS methods, would be highly desirable.  Quantitative 

MS-based assays use measured quantities of a stable isotope labeled version of each peptide 

(SIS) as internal standards and thus provide readouts directly in fmol of target peptide.  This 

approach was originally, but erroneously, referred to as “absolute quantitation” [59]: in fact 

subsequent experience has shown repeatedly that these values are not absolutely accurate due to 

several factors including potential loss or modification of some fraction of each SIS peptide after 

initial quantitation by amino acid analysis (e.g., during storage and processing [60]), and the 

difficulty of achieving and proving 100% yield even in extremely reproducible tryptic digestion 

protocols [15].  For these reasons, internally-standardized MS assays can be very precise across a 
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batch of samples where the same SIS cocktail and other reagents are used, but may not remain 

perfectly accurate in absolute molar terms from batch to batch (where the composition of the SIS 

cocktail could vary).  An effective solution to achieve long-term comparability is use of single 

point calibrators (aliquots of well-characterized standard samples, as proposed by Hoofnagle 

[61]) as external standards in each sample batch, or, equivalently, to repeat analysis of a subset of 

subject samples in different batches, as performed here.  Use of a single calibrator is made 

possible by the wide linear dynamic range of stable-isotope dilution MS detection, as opposed to 

the sigmoid response of most immunoassays.  When comparisons between individuals, or with 

population values, is the objective, or when comparability with existing clinical assay methods is 

required, absolute values can be assigned to a calibrator [61] to link results to established 

reference levels.  Using the single point calibrator approach, values can be assigned to the 

standard samples at any time, including the future, and the results propagated backwards to 

retroactively calibrate previous analyses. 

Scale and Scope of Inflammation Responses 

As a first example of high-frequency longitudinal DBS analysis we explored the most 

common source of multivariate change in the plasma proteome: inflammation.  Episodic acute 

phase responses to inflammation represent the largest effects observed in this data set, with 

numerous examples spanning a broad range of intensities, involving many proteins and driven by 

a variety of causes.  Previous studies have measured protein panels by a variety of methods to 

track inflammation associated with infection [62,63], typhoid vaccination [64], surgery [12] and 

LPS-administration [65] at a small number of time points (e.g., 2-7), but none have had the assay 

precision, time resolution and breadth of causation available in the present data set.  Among 8 

subjects in this pilot study, all of whom (except for the single Crohn’s patient) were generally 

healthy, we observed inflammatory events related to: surgery (a short duration inflammatory 

pulse followed by a smooth recovery); infections (following variable courses ranging from days 

to weeks, each having a discrete beginning and end); and Crohn’s disease (a chronic pattern of 

recurring inflammation with components lasting years).   

The largest quantitative changes we observed in each subject resulted from infection, and 

included increases of more than 1,000-fold in SAA and more than 100-fold in CRP, 

accompanied by smaller increases in proteins such as LPSBP, MBL, A1AG, Hp, FibG, Hx and 

C3 (typically in a range of 1.2- to 4-fold).  A less dramatic event (influenza vaccination) drove 
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SAA increases of only 1.3- to 2.2-fold (consistent with published studies [66]) – yielding a 

dynamic range of almost 1000 in detectable APR responses.  Even smaller amplitude 

“microinflammation events” were detectable through the coordinated behavior of SAA, CRP and 

LPSBP.  These inflammation biomarkers showed significant correlations (Figure 3) even in the 

half of each subjects’ samples with lowest CRP, demonstrating that low-level variations are not 

due simply to measurement noise but instead contain measurable inflammatory modulations 

hidden in the baseline values.    

Each APR protein followed a characteristic time course, most clearly visible in the 

response to a short surgical procedure (a 2 hr total hip arthroplasty).  Because of these 

differences and despite substantial correlations observed among the markers, all of which are 

produced primarily in the liver in response to cytokine signaling [19], a set of APR proteins 

provides much more information over time than CRP alone.  For the positive APR, the time 

order of increase is typically LPSBP, SAA, CRP, A1AG, FibG, Hx, MBL, Hp, C3, with the 

more rapidly increasing proteins (SAA, CRP, LPSBP) showing the greatest quantitative changes 

relative to baseline.  The order of decline is similar but not identical (SAA, CRP, LPSBP, Hp, 

Hx, FibG, MBL, A1AG, C3), an order that is generally consistent with previously measured 

half-lives of CRP, LPSBP, A1AG and C3 of 26, 32, 104 and 84 hr respectively [37].  APR 

proteins also showed complex amplitude control.  Peak levels of SAA and LPSBP achieved in 

inflammation events are non-linearly related to peak CRP.  Indeed, SAA shows a greater fold-

increase over baseline than CRP in stronger APR responses, while the opposite is true in 

responses to low level infections.  These results suggest that a dimensionless ratio of SAA and 

CRP fold-change relative to personal baseline could be a useful indicator of infection severity.   

As a first step to move beyond conventional single-parameter CRP measurements of 

inflammation we used simple 2-parameter plots [35] to track the sequence of events involved in 

departing from, and then returning to an individual’s healthy baseline state of inflammation.  An 

example (Figure 7) plotting SAA (here summarizing the rapid component of the APR response) 

vs Hp (slower APR response) depicts recovery following hip replacement surgery as a 

counterclockwise loop, tracking inflammatory physiology independent of clock time.  This 

smooth recovery loop is interrupted by renewed inflammation at several points, coinciding with 

the subject’s reports of a localized pelvic strain and resumption of pain medication.  A 50% 

decline in inflammation level between un-medicated pre-operative and post-surgical baseline 
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samples provides a quantitative demonstration of the reduction in inflammation following 

replacement of a diseased hip joint.  Both effects suggest the potential value of inflammation 

markers as surrogates for pain in the context of tissue damage.  Similar loop presentations of a 

series of infection events (Figure 8) indicate differences in magnitude and path that likely relate 

to the etiology and severity of infections (though no infectious agents were identified in these 

cases as none required hospitalization).   

Taken together, the complex time and amplitude relationships among the APR proteins 

suggest that advanced multiparameter modeling approaches like those used in 

pharmacodynamics [67] and machine learning [2] will emerge as valuable tools for inflammation 

monitoring.  Such models can be personalized based on past infection loop histories (e.g., 

training the models on past colds or vaccinations to “calibrate” a subject’s responses) and used to 

improve assessment of both infection severity and stage of response (i.e., where the subject is in 

the cycle of infection and recovery, independent of clock time).  

A surprisingly high proportion (12-45%) of each subject’s samples showed indications of 

inflammation, whether defined as CRP levels >2-fold above personal baselines, or inclusion in 

the 58 discernable APR events.  Similar proportions are obtained when considering only those 

samples collected on a near-daily basis (about 1/3 of the samples), in which the timing of 

collection should be less susceptible to subjects’ selection bias.  Such high frequencies, if 

confirmed in a larger subject population, suggest that unrecognized short-term inflammatory 

events are likely to occur during well-designed investigational studies including drug trials.  

Numerous small molecule drugs are known to bind to albumin and/or A1AG [68], both of which 

are observed to change significantly in inflammatory situations, potentially altering drug 

distribution in both trials and clinical use.  Likewise randomly-timed single CRP measurements 

(such as those included in annual checkups) may frequently overestimate a patient’s true baseline 

level if collected during a microinflammatory episode, and thus bias predictions of 

cardiovascular disease risk [18,69].  The use of a personal baseline CRP level derived from a 

series of longitudinal samples should provide a better risk estimate by capturing baseline 

inflammation separately from fluctuations related to transitory subclinical events.   

In addition to acute phase proteins, we also observed increases in IgM and MPO in a 

subset of infections.  While most infections did not cause measurable increases in IgM, three 

episodes resulted in increases of 30-50% in total IgM 8-10 days after SAA peaked, after which 
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the levels subsided to pre-existing baseline levels.  The production of such large amounts of IgM 

after specific infection events is consistent with the expected timeframe for an adaptive immune 

response to a pathogen, and may provide an opportunity to identify endogenous human 

monoclonal antibodies from DBS samples with potential therapeutic value as anti-infectives.  In 

contrast, MPO, which serves in whole blood as a surrogate for neutrophil count, was frequently 

increased at the earliest stage of infection followed by spikes every 2 or 3 days, consistent with 

periodic release from and regeneration of neutrophil pools in the bone marrow [36]. 

 

Future outlook for dense longitudinal analysis 

Longitudinal measurements of clinically established blood protein biomarkers can be 

considered as dynamic readouts from internal physiological sensors and as such it is natural to 

envision combining them with other emerging dynamical health data sources [70] including 

heart-rate, steps, sleep and electrocardiogram data from smart watches and phones; data collected 

by continuous positive airway pressure (CPAP) devices used to treat apnea; glucose sensors; 

local weather records; as well as a wide variety of user-provided “contextual data” collected 

though disease-centric (e.g., Crohn’s disease), weigh-loss and dietary smartphone apps.  

Combinations of protein biomarkers with these data streams will play an increasing role in data 

interpretation as we report additional results on other components of the DBS panel measured 

here related to lipoproteins, iron metabolism, kidney function, etc..  Taken together, dynamic 

measurements from internal physiological sensors (blood proteins) and external mechanic-

physical sensors will provide “Big Data” of sufficient size, scope and precision to enable 

productive machine learning and the construction of practical personalized health models.   
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Materials and Methods 

Samples 
Capillary blood samples (1,522 in total, Table 1) were self-collected by participants at 

home using lancet finger-pricks (Medlance Plus Extra or Special, HTL Strefa) and dried on 

Whatman 903 Proteinsaver dried blood spot (DBS) cards (5 drops on each card).  Participants 

provided informed consent under IRB approval (Quorum Review 33239CDN/1).  The DBS 

cards were generally stored at 4° C in the presence of desiccant except for brief periods at room 

temperature or at -20° C, and were barcoded prior to analysis.  Transportation of specimens to 

the laboratory for processing followed the guidelines provided by the Center for Disease Control 

and Prevention (CDC) for shipment of DBS specimens.  Individual samples consisted of punches 

taken from blood-covered regions of DBS cards and deposited in wells of 96-well plates (four 

1/16” punches for Dataset A and a single ¼” punch for Datasets B and C).  

SISCAPA-LC-MRM protein measurement 
Groups of samples were analyzed on three separate occasions (in 2015, 2016 and 2017) 

to generate datasets identified here as Datasets A, B and C.  Sample preparation and SISCAPA 

enrichment were performed using an automated protocol essentially as described [5] for all three 

datasets, with different, but largely overlapping, sets of measured protein targets (TABLE 2).  In 

this protocol, proteotypic tryptic peptides (whose sequence appears only in the target protein) 

were used as surrogates for proteins after digestion of DBS samples with trypsin (one peptide per 

target protein, except for Apo A-I and Apo B lipoproteins when two were used for each).  These 

peptides were quantitated in relation to added same-sequence stable isotope labeled peptide 

internal standards (SIS) by MRM mass spectrometry after immuno-affinity enrichment using 

anti-peptide antibodies (SISCAPA) as previously described [5,8,32,71].  The protocol is 

implemented as a series of liquid addition steps to dissolve and denature DBS proteins, followed 

by disulfide reduction and alkylation, tryptic digestion, addition of stable isotope labeled (“SIS”) 

versions of the target peptides as internal standards, capture of target tryptic peptides and internal 

standards by anti-peptide antibodies (one for each target peptide) on magnetic beads, and finally 

washing of the beads and elution of target peptides for injection into the LC-MS, which then 

measures the peak area ratio of endogenous sample-derived tryptic peptides to their 
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corresponding stable-isotope labeled internal standards.  This automated “addition only” protocol 

is designed to increase precision [5].  Target protein amounts were expressed as femtomole 

(fmol) of proteotypic peptide in each sample, calculated by multiplying the observed MRM 

peak-area ratio (endogenous target : SIS) by the known amount of added SIS.  SIS peptides were 

labeled with 13C, 15N lysine or arginine as the c-terminal amino acid, except in the case of 

ApoE where the proteotypic peptide was at the c-terminus of the protein and an internal valine 

residue was labeled instead.     

Samples were analyzed in three tranches on separate occasions: Datasets A, B and C, run 

in 2015, 2016 and 2017 covering 20, 12 and 27 peptides in 600, 423 and 606 samples 

respectively (TABLE 2).  Dataset A results (792 samples from 16 subjects) have been previously 

described in part [32], and used an LC-MS/MS platform consisting of an Agilent 1290 LC 

operating at 600 µL/min and an Agilent 6490 triple quadrupole MS.  Replicate standards were 

prepared as punches of whole blood dried on 903 paper (4 punches of 1.5 mm diameter were 

used per well). 

Datasets B and C employed an Eksigent microflow LC system operating at 10 µL/min 

connected to a Sciex 6500 Q-trap MS.  Dataset B (436 samples from 4 subjects) focused on 

measurements of a panel of gastrointestinal inflammation related proteins and employed a single 

MRM for each peptide.  Replicate standards were prepared by pipetting whole blood onto pre-

cut 6 mm diameter disks of 903 paper in sample wells. 

Dataset C (792 samples from 10 subjects) was comprised of two sequential panels 

applied to the same DBS digests and employed 1 to 3 MRMs for each peptide (PAR for the 

selected MRMs were averaged to generate a single value for each peptide measured in a sample).  

All the panels and plexes included the normalizing protein triad (albumin, hemopexin and IgM).  

Replicate standards were prepared as punches of whole blood dried on 903 paper. 

Nine peptides were measured in all datasets (including Alb, Hx, and IgM) and 19 were 

measured in both Datasets A and C.  As part of continuing efforts to increase assay precision, the 

27-plex used in Dataset C was measured as two sequential SISCAPA multiplex subpanels, both 

of which included normalizing proteins Albumin (Alb), Hemopexin (Hx) and total 

immunoglobulin M (IgM).  Datasets A and B used a single MRM per peptide (measured as a 

single multiplex panel), while Dataset C used the average of 1 to 3 of the best quality MRM 

transitions available for the respective peptides.  Datasets B and C were each merged with 
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Dataset A using a run-to-run scale factor for each protein in common between datasets in order 

to account for potential shifts in the absolute amounts of the SIS peptides during storage between 

the analytical runs.  The scale factor was derived from the ratio of average values for a protein in  

subject samples that were analyzed in both Datasets (88 samples analyzed in both Datasets A and 

B, and 19 samples analyzed in both Datasets B and C, in each case using duplicate punches from 

the same DBS card).  When samples from the same subject were shared between datasets this 

ratio was subject-specific; for subjects without shared samples an average of the subject-specific 

ratios was used. 

Data analysis 
Peak area ratio (PAR) measurements in Dataset A were obtained using MassHunter 

Quantitative Analysis (v. B.05.02), while in Datasets B and C the Sciex MultiQuant program (v. 

3.0.2) was used.  PAR data was assembled in Tableau Prep Builder (www.tableau.com) and 

joined with tables defining sample characteristics (e.g., date of collection, subject contextual 

health notes, etc.), SIS concentrations, analytical run structures, etc..  Data analysis and 

visualization was carried out in Tableau. 
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Supplementary Materials 

 

 

Supplementary Table 1.  Impact of volume normalization on coefficients of variation of replicate 
standards in three datasets. 
  

Protein

CV Before Vol 

Normalization

CV After Vol 

Normalization

CV Before Vol 

Normalization

CV After Vol 

Normalization

CV Before Vol 

Normalization

CV After Vol 

Normalization

A1AG 11.3% 8.6% 9.2% 4.7%

Alb 7.2% 1.9% 7.2% 5.7% 10.4% 1.9%

ApoA1 (AKP) 10.0% 1.5%

ApoA1 (ATE) 7.9% 4.6% 11.2% 6.5%

ApoB (FPE) 6.2% 2.4% 9.7% 2.4%

ApoB (TEV) 10.5% 2.8%

ApoC-III 9.4% 4.2%

ApoE 7.2% 5.5%

ATIII 12.4% 9.4% 8.0% 9.6%

C3 6.2% 2.3% 9.3% 5.5%

CRP 14.1% 13.1% 6.8% 6.8% 9.8% 3.3%

CysC 5.6% 6.1% 11.7% 3.5%

FibG 6.9% 5.3% 10.6% 4.3%

HbA 7.0% 5.6% 7.3% 7.0% 10.3% 4.9%

Hp 10.2% 9.4% 5.3% 5.5% 6.8% 9.4%

Hx 6.4% 1.4% 4.6% 3.0% 10.0% 1.5%

IGF-1 20.4% 19.8% 9.8% 2.0%

IgGall 10.6% 5.8%

IgM 6.1% 2.6% 6.1% 4.6% 9.8% 2.1%

L-Plastin 11.1% 5.0%

LPSBP 7.6% 6.5% 6.4% 6.2% 10.2% 3.7%

MBL 8.1% 7.8% 11.1% 11.2% 14.2% 12.1%

MPO 11.7% 13.1% 5.8% 5.5% 10.5% 9.7%

Pla 6.7% 2.8% 9.9% 5.0%

SAA 10.9% 8.8% 5.0% 4.8% 11.6% 3.7%

sTfR 9.8% 7.1%

Tf 9.6% 2.5%

TIMP1 9.5% 8.2%

vWF 18.1% 18.2%

Average 9.4% 7.4% 6.5% 6.1% 10.2% 4.6%

Dataset A Standards Dataset B Standards Dataset C Standards
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Supplementary Table 2.  Proportion of subject samples with evidence of inflammation. 
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S-01 186        9 47 91 25% 49%
S-04 250        9 78 109 31% 44%
S-07 49           6 0 12% 0%
S-10 284        11 128 67 45% 24%
S-17 87           1 30 8 34% 9%
S-18 411        20 77 133 19% 32%
S-20 45           2 14 8 31% 18%
S-22 210        6 45 34 21% 16%
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Supplementary Fig 1.  Amounts (fmol of peptide)  for 11 proteins measured in 255 longitudinal DBS 
samples from a single subject before (top panel) or after (lower panel) DBS volume normalization 
by Alb, Hx, IgM.
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Sup	Fig	1:	DBS	samples	Before	and	After	ScalingCLS

Protein
Alb
ApoA1	(ATE)
ApoB	(FPE)
C3
CRP
HbA
Hx
IGF-1
IgM
LPSBP
SAA

The	trends	of	average	of	*03	-	Fmol	after	multiplication	by	SIS	levels	and	average	of	*05	-	Fmol	after	plasma	vol	normalization	for
Order	for	Subject	broken	down	by	Short	subject	code.		Color	shows	details	about	Protein.	The	data	is	filtered	on	Dataset,	Plex	and
Source	abbreviation.	The	Dataset	filter	keeps	Null,	20150300	SAT	DBS	Set	2,	20161219	SAT	DBS	Set	3	and	20171000	SAT	DBS
Set	4.	The	Plex	filter	keeps	1	and	2.	The	Source	abbreviation	filter	keeps	CLS.	The	view	is	filtered	on	Protein	and	Order	for
Subject.	The	Protein	filter	keeps	11	of	32	members.	The	Order	for	Subject	filter	excludes	Null.
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Sup	Fig	2A:	Inflammation		whisker	8	subjects	Baseline	variation	6	proteins

Average	of	*11c	-	Fmol	/	median	all	subjects	baseline	samples	for	each	Short	subject	code	broken	down	by	Protein.		Details	are	shown	for	Short
subject	code	and	Sample	barcode.	The	data	is	filtered	on	Consented	under	SAT	IRB	and	*09b	-	Propagate	CRP	baseline	definition.	The
Consented	under	SAT	IRB	filter	keeps	1.	The	*09b	-	Propagate	CRP	baseline	definition	filter	keeps	1.	The	view	is	filtered	on	Protein	and	Short
subject	code.	The	Protein	filter	keeps	6	of	32	members.	The	Short	subject	code	filter	excludes	S-15	and	S-19.
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Sup	Fig	2A:	Inflammation		whisker	8	subjects	Baseline	variation	6	proteins

Average	of	*11c	-	Fmol	/	median	all	subjects	baseline	samples	for	each	Short	subject	code	broken	down	by	Protein.		Details	are	shown	for	Short
subject	code	and	Sample	barcode.	The	data	is	filtered	on	Consented	under	SAT	IRB	and	*09b	-	Propagate	CRP	baseline	definition.	The
Consented	under	SAT	IRB	filter	keeps	1.	The	*09b	-	Propagate	CRP	baseline	definition	filter	keeps	1.	The	view	is	filtered	on	Protein	and	Short
subject	code.	The	Protein	filter	keeps	6	of	32	members.	The	Short	subject	code	filter	excludes	S-15	and	S-19.

Supplementary Fig 2.  Whiskerplots of the amounts of 12 proteins in the baseline samples of each 
of 8 subjects.  Protein amount has been normalized between proteins by dividing by the median 
amount in all subjects.
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CORR	broken	down	by	Short	subject	code	and	Protein	(Data	for	correlations	SCALED	201)	vs.	Protein.		Color	shows	CORR.		The	marks	are	labeled	by	CORR.	The	data	is	filtered	on	Measure

Names1,	Measure	Names	(Data	for	correlations	SCALED	201),	Dataset,	Dataset	(Data	for	correlations	SCALED	201),	Diagonal	filter,	*09b	-	Propagate	CRP	baseline	definition,	*09b	-

Propagate	CRP	baseline	definition	(Data	for	correlations	SCALED	201)	and	Short	subject	code	(Data	for	correlations	SCALED	201).	The	Measure	Names1	filter	keeps	*11	-	Fmol	/	subject

baseline	average.	The	Measure	Names	(Data	for	correlations	SCALED	201)	filter	keeps	*11	-	Fmol	/	subject	baseline	average.	The	Dataset	filter	keeps	20150300	SAT	DBS	Set	2,	20161219

SAT	DBS	Set	3	and	20171000	SAT	DBS	Set	4.	The	Dataset	(Data	for	correlations	SCALED	201)	filter	keeps	20150300	SAT	DBS	Set	2,	20161219	SAT	DBS	Set	3	and	20171000	SAT	DBS	Set	4.

The	Diagonal	filter	filter	keeps	True.	The	*09b	-	Propagate	CRP	baseline	definition	filter	keeps	0	and	1.	The	*09b	-	Propagate	CRP	baseline	definition	(Data	for	correlations	SCALED	201)

filter	keeps	0	and	1.	The	Short	subject	code	(Data	for	correlations	SCALED	201)	filter	keeps	S-01,	S-04,	S-07	and	S-10.	The	view	is	filtered	on	Protein,	Protein	(Data	for	correlations	SCALED

201)	and	Short	subject	code.	The	Protein	filter	keeps	9	of	26	members.	The	Protein	(Data	for	correlations	SCALED	201)	filter	keeps	9	of	26	members.	The	Short	subject	code	filter	keeps

S-01,	S-04,	S-07	and	S-10.

Supplementary Fig 3.  Protein:Protein correlation matrices for inflammation-related proteins calculated using all 
samples from each subject separately after volume normalization and division by personal baseline average 
values.  



Supplementary Fig 4.  Protein:Protein correlation matrix calculated using only the baseline (non-
inflammation) samples from each subject after volume normalization and division by personal baseline 
average values.  A: acute phase response proteins; B: cluster related to coagulation and blood viscosity; 
C) lipoproteins; D) proteins used in volume normalization.
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Suppl	Figure	4
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CORR

CORR	broken	down	by	Protein	(Data	for	correlations	SCALED	201)	vs.	Protein.		Color	shows	CORR.		The	marks	are	labeled	by	CORR.	The	data	is	filtered	on	Measure	Names1,	Measure

Names	(Data	for	correlations	SCALED	201),	Dataset,	Dataset	(Data	for	correlations	SCALED	201),	Diagonal	filter,	*09b	-	Propagate	CRP	baseline	definition,	*09b	-	Propagate	CRP	baseline

definition	(Data	for	correlations	SCALED	201),	Short	subject	code	and	Short	subject	code	(Data	for	correlations	SCALED	201).	The	Measure	Names1	filter	keeps	*11	-	Fmol	/	subject

baseline	average.	The	Measure	Names	(Data	for	correlations	SCALED	201)	filter	keeps	*11	-	Fmol	/	subject	baseline	average.	The	Dataset	filter	keeps	20150300	SAT	DBS	Set	2,	20161219

SAT	DBS	Set	3	and	20171000	SAT	DBS	Set	4.	The	Dataset	(Data	for	correlations	SCALED	201)	filter	keeps	20150300	SAT	DBS	Set	2,	20161219	SAT	DBS	Set	3	and	20171000	SAT	DBS	Set	4.

The	Diagonal	filter	filter	keeps	True.	The	*09b	-	Propagate	CRP	baseline	definition	filter	keeps	1.	The	*09b	-	Propagate	CRP	baseline	definition	(Data	for	correlations	SCALED	201)	filter

keeps	1.	The	Short	subject	code	filter	keeps	8	of	8	members.	The	Short	subject	code	(Data	for	correlations	SCALED	201)	filter	keeps	8	of	8	members.	The	view	is	filtered	on	Protein	and

Protein	(Data	for	correlations	SCALED	201).	The	Protein	filter	keeps	26	of	26	members.	The	Protein	(Data	for	correlations	SCALED	201)	filter	keeps	26	of	26	members.
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Sup	Fig	4:	Show	inflammation	events	MPO

The	plot	of	average	of	*11	-	Fmol	/	subject	baseline	average	for	DateTime	of	Collection	Hour	broken	down	by
Blind	Source	Code	and	Short	subject	code.		Color	shows	details	about	maximum	of	Inflammation	events
numbered.		Shape	shows	details	about	maximum	of	Inflammation	events	numbered.		Details	are	shown	for
Sample	barcode.	The	data	is	filtered	on	Source	abbreviation,	Protein,	Dataset	and	Inflammation	events
numbered.	The	Source	abbreviation	filter	keeps	BA,	CLS,	JK,	NLA	and	TP.	The	Protein	filter	keeps	MPO.	The
Dataset	filter	keeps	Null,	20150300	SAT	DBS	Set	2,	20161219	SAT	DBS	Set	3	and	20171000	SAT	DBS	Set	4.
The	Inflammation	events	numbered	filter	keeps	21	of	21	members.
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Supplementary Fig 5.  Values for MPO normalized by personal baseline showing several infection 
events in which MPO temporarily increased.



Supplementary Fig 6.  Values for IgM normalized by personal baseline showing two infection 
events (S-10 E11 and S-18 E6) in which IgM temporarily increased by more than 50% and the 
returned to baseline levels.  A third event (S-01 E7) showed a temporary increase of about 30%.
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Sup	Fig	5:	Show	inflammation	events	IgM

The	plot	of	average	of	*11	-	Fmol	/	subject	baseline	average	for	DateTime	of	Collection	Hour	broken	down	by
Blind	Source	Code	and	Short	subject	code.		Color	shows	details	about	maximum	of	Inflammation	events
numbered.		Shape	shows	details	about	maximum	of	Inflammation	events	numbered.		Details	are	shown	for
Sample	barcode.	The	data	is	filtered	on	Source	abbreviation,	Protein,	Dataset	and	Inflammation	events
numbered.	The	Source	abbreviation	filter	keeps	BA,	CLS,	JK,	NLA	and	TP.	The	Protein	filter	keeps	IgM.	The
Dataset	filter	keeps	Null,	20150300	SAT	DBS	Set	2,	20161219	SAT	DBS	Set	3	and	20171000	SAT	DBS	Set	4.
The	Inflammation	events	numbered	filter	keeps	21	of	21	members.
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