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Abstract 

Machine learning and topological analysis methods are becoming increasingly used on various 

large-scale omics datasets.  Modern high dimensional flow cytometry data sets share many features 

with other omics datasets like genomics and proteomics.  For example, genomics or proteomics datasets 

can be sparse and have high dimensionality, and flow cytometry datasets can also share these features.  

This makes flow cytometry data potentially a suitable candidate for employing machine learning and 

topological scoring strategies, for example, to gain novel insights into patterns within the data.  We have 

previously developed the Topological Score (TopS) and implemented it for the analysis of 

quantitative protein interaction network datasets.  Here we show that the TopS approach for large 

scale data analysis is applicable to the analysis of a previously described flow cytometry sorted 

human hematopoietic stem cell dataset.  We demonstrate that TopS is capable of effectively 

sorting this dataset into cell populations and identify rare cell populations.  We demonstrate the 

utility of TopS when coupled with multiple approaches including topological data analysis, X-

shift clustering, and t-Distributed Stochastic Neighbor Embedding (t-SNE).  Our results suggest 

that TopS could be effectively used to analyze large scale flow cytometry datasets to find rare 

cell populations. 
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Introduction  

Utilizing high-throughput technologies, dynamic -omics data including genomics, 

transcriptomics, epigenomics, proteomics, and metabolomics has produced temporal-spatial big 

biological datasets which generally can be analyzed using similar approaches 1, 2. Statistically, -

omics data is typically presented as a large data matrix where the rows correspond to variables 

like the expression level of a gene in genomics, the expression level of a protein in proteomics, 

and the expression of protein markers on a cell in flow cytometry, and the columns correspond to 

independent samples 3, 4.  Major challenges persist regarding the analysis of large scale -omic 

datasets.  This includes challenges regarding how to handle the complexity of data and how 

should the data be translated to discover the underlying biology from these large and complex 

matrices.   

 

It is therefore necessary to use different analysis methods or scoring strategies for large 

scale datasets to achieve more biological understanding and generate novel hypotheses. We 

recently introduced a new topological score for the analysis of proteomics data named 

Topological Scoring (TopS) 5, 6. The TopS method has already been used in an analysis of 

biological networks and its performance has been tested against other tools for proteomics 

analysis 5-8.  TopS uses a likelihood score on quantitative values and in principle is can use any 

type of quantitative data, rather than being restricted to one type of -omics data.  TopS generates 

large and small values corresponding to strong or weak links between variables and samples 

relative to other samples in a matrix 5, 6 .  In general, TopS in combination with machine learning 

can be used to detect subnetworks consisting of points with similar patterns in large networks.   
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Flow cytometry is a technology that typically generates large scale quantitative datasets 

for the discovery of specific or rare cell populations such as bone marrow-residing hematopoietic 

stem cells (HSCs) 9, 10.  The ability to detect specific cell populations that associate strongly with 

different cell-surface protein markers typically presents challenge to data analysis and many 

clustering methods have been used to study such a dataset ) 9, 10.  Here, we report the results of 

analyzing the Nilsson rare human hematopoietic stem cell dataset 9, 10 set by TopS and machine 

learning (Figure 1).  We compared the use of TopS to original transformed data and expert gating results 

to test the usage of TopS for the analysis of a multi-color cytometry data set.  Here we implement three 

different computational approaches-based on machine learning including topological data analysis (TDA) 

11-14, X-shift clustering 15-17, and t-Distributed Stochastic Neighbor Embedding (t-SNE) 18-20 analysis for 

the analysis and visualization of the flow cytometry data.  TDA is one of the newer and powerful method 

for the analysis of large datasets 11-14 . TDA is using topological and geometric approaches to infer 

relevant features in complex datasets.  X-shift clustering has been used in the analyses of the CyTOF 

and flow cytometry datasets and it is using a weighted K-nearest neighbor density estimation (KNN-DE) 

to determine the clusters in a large dataset 15-17.   Lastly, t-SNE is a non-linear technique for 

dimensionality reduction that is commonly used for the visualization of high-dimensional 

datasets 18-20. Unlike TDA and X-shift, t-SNE is often used with other unsupervised learning 

algorithms for data classification.  We demonstrate that TopS is an effective approach for 

processing data prior to utilization of TDA, X-shit, or t-SNE and is capable of efficiently finding 

rare cell populations in a flow cytometry sorted human hematopoietic stem cell dataset 

 

Results and Discussion 

Clustering of human hematopoietic stem cell dataset. 
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One of the major challenges for the study of hematopoietic stem cells (HSCs) is their 

identification and isolation from larger pools of cells 9, 10.  Thus, developing biological and 

computational techniques for the identification of HSCs is of great importance. Here we selected 

a publicly available data from experiments in immunology using flow cytometry to demonstrate 

the use of TopS in the analysis of flow cytometry data. The Nilsson rare data contains rare 

population from bone marrow cells from healthy donor with 44,140 number of cells, 13 cell-

surface protein markers and 358 (0.8%) manually gated cells (Supplementary Table 1) 9, 10. Early 

studies showed that no single cell-surface protein marker could specifically define the HSC and 

there is need of additional markers to purify HSC to homogeneity 9, 10. The Nilsson rare data 

consists of 13 different markers (i.e. CD10, CD110, CD11b, CD123, CD19, CD3, CD34, CD38, 

CD4, CD45, CD45RA, CD49fpur, CD90bio) that led to the identification of 9 different cell 

populations such as myeloid cells; B-lymphoid cells; CD4-T-cells; CD4+ T-cells; common 

lymphoid progenitors (CLPs); megakaryocyte/erythrocyte progenitors (MEPs); 

granulocyte/macrophage progenitors (GMPs); multipotent progenitor (MPPs); and hematopoietic 

stem cells (HSCs) 9, 10. The original data was pre-processed as described in Weber et al. 10 by 

using an arc-sinh transformation with a standard factor of 150 (i.e. arcsinh(x/150)) 

(Supplementary Table 1). From here on we call this matrix original/transformed data. TopS was 

next used to generate topological values on this dataset (Supplementary Table 2).  

 

To better understand the changes in the expression of these cell-surface protein markers 

in the original/transformed data, we first applied a Pearson correlation (see Methods). In Figure 

2A we represented the correlations between the cell-surface protein markers using their 

expression in the 44,140 cells. Overall, the Pearson correlations show a high range of 
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correlations, ranging from rather low to high correlation coefficients. The highest correlations 

were between the CD110 and CD19 with a correlation of 0.911 followed by the correlation 

between CD19 and CD34 with a correlation of 0.857 (Fig. 2A). This result indicates that CD19, 

CD34 and CD110 might form a small cluster. In contrast, the lowest correlations were observed 

between CD3 and CD38 with an anticorrelation of -0.44147 followed by the correlation between 

CD10 and CD11b markers with an anticorrelation of -0.433 (Fig. 2A). These results suggest a 

substantial difference between the cell-surface protein markers profiles.  

 

Hierarchical clustering was also performed on both the original/transformed data and the 

topological scores using the TopS shinny app to further illustrate the classification of the samples 

according to similarities of the cell-surface protein markers profiles (Fig. 2B).  Interestingly, the 

markers pairs with the highest correlations are separated from each other when the 

original/transformed data is used (Fig. 2B). On the other hand, when using TopS the markers 

with the highest correlations in the matrix (i.e. CD19, CD110 and CD34) were under the same 

tree (Fig. 2C) in agreement with the Pearson correlations reported above. In addition, all the 

markers with the lowest correlations were positioned in both clusters away from each other (Fig. 

2C).  This figure illustrates the value of additional normalization methods like TopS to better 

elucidate the structure of the data and better cluster the samples. Furthermore, Figure 2 also 

suggested that various distance metrics must be explored when the transformed/original data is 

used.  

 

Topological scoring of dataset with machine learning approaches 
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Next, we utilized multiple machine learning approaches with or without TopS to evaluate 

the ability of TopS to discern rare cells in the Nilsson rare human hematopoietic stem cell 

dataset.  To begin, we investigated the utility of topological data analysis (TDA) 11-14. TDA has 

be recently used for different omics data including cytometry data 21.  TDA is a method that 

allows for the study of high dimensionality data sets by extracting shapes or patterns from the 

underlying data such that the researcher can gain new insights into patterns and relationships 

within the data 11-14. TDA also allows identification of clusters of rare events with a unique 

signature in a much larger data set 11-14. Because if its robustness to noise and coordinate 

insensitive nature and such has proved effective in identifying meaningful groupings or patterns 

of samples and data points from a diverse set of biological data types including microarray 

transcriptome data and protein-protein interaction networks 22, 23 .  

 

Here, the input data for TDA was represented in a matrix, with each column 

corresponding to each cell-surface protein marker and each row corresponding to a cell.  The 

values were transformed values or topological scores for each cell-surface protein marker in 

different cell types.  A network of nodes with edges between them was then created using the 

TDA approach based Ayasdi platform.  Nodes in the network represent clusters of multiple cells, 

which is an important feature of the TDA network. This is in contrast to other networks where 

nodes consist of a single cell. Nodes in Figure 3 are colored based on the rows per node and on 

the label that corresponds to the gated cells (0 for major/multiple cells or 1 for HSC cells). Our 

aim was to provide a global overview of this complex dataset with the focus on the detection of 

rare events using TDA and additionally show the benefit of using TopS with TDA for the 

analysis of flow cytometry data. In Figure 3, we show the TDA analysis using (A) the 



8 
 

topological score and (B) the original/transformed data in which the nodes are colored by the 

rows per node. In Figure 3A we observed that the cells are well separated in different groups 

based on the expression profiles. Importantly, Figure 3A also revealed group of cells in which 

the expressions of specific markers were enriched when compared with the rest of the markers, 

which is one of the unique features of the TopS. For example, we observed that the rare events 

were separated in two groups by TDA and the CD90bio and CD49fpur markers are enriched in 

these cells when compared with the other markers, and this agrees with the known association of 

CD90 and CD49f with human HSCs 24.  

TDA and TopS also detected other groups of cells where other markers were enriched. 

For example, of the right side of the Figure 3A, we can observe that the CD10 marker was highly 

expressed in the group of cells colored by red. TDA also shows a substantial amount of cross-

talks between different markers. In contrast, in Figure 3B, when the original data/transformed 

data was used, TDA didn’t separate the data very well using the same parameters as in Figure 

3A, and the majority of the rare events were spread through the entire network.  To better 

highlight the location of the rare events in the two networks we colored the nodes by the label 

that corresponds to the gated cells and we observe a more focused localization of these cells 

when using TopS with TDA (Figures 3C and 3D).   

 

We next investigated the use of X-shift clustering 15, 16, 25, 26 on the Nilsson rare flow 

cytometry data.  X-shift (VorteX) is a standalone application with graphical interface that uses 

the weighted k-means density estimation 15, 16, 25, 26 .  Validation of the k value by elbow point 

gives an optimal k = 62 for 38 clusters in the case of TopS and k=62 for 30 clusters for the use of 

the original/transformed data (Supplementary Table 3). The results of TDA analysis using TopS 
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data is in agreement with the results from the X-shift where the rare events were separated in two 

clusters. Similarly, X-shift produced two clusters for the rare events when the 

original/transformed data was used, however the overall numbers of clusters was smaller than the 

number of clusters obtained for TopS (Figure 4A and B, colored in blue). It is desirable to have 

more clusters than few in order to avoid smaller populations merging in larger clusters 27.  

Supplementary Figure 1A and 1B show that TopS provides wider range of numbers than in the 

original/transformed data, thus the over representative values in the matrix can be identified and 

therefore the markers that bring the most contribution in the detection of the rare events can be 

easily detected. 

 

Lastly, wet performed a t-SNE 18-20 analysis on the original/transformed and TopS data 

sets followed by a k-means clustering approach on the two vectors generated from the t-SNE 

(Supplementary Table 4). The number of clusters used for the k-means, were obtained from the 

X-shift as optimal numbers. Using k=38 for the TopS and k=30 in the case of the 

original/transformed data, the t-SNE produced similar results as the x-shift and TDA. Using 

TopS, the rare events were separated in two clusters (Figure 5A and 5B). Like X-shift, t-SNE 

recovered two clusters for the rare events when original/transformed data is used (Figure 5C and 

5D). The smallest cluster identified cells in which the C90bio marker was remarkably expressed 

when compared with the other markers, while the largest cluster identified cells in which the 

C49fpur and CD45 were highly enriched (Supplementary Table 4). To visualize the difference 

between these two clusters we decided to represent the clusters as heat maps (Figure 6).  The first 

cluster showed cells with high enrichment of several markers (Figure 6A) while the second 

cluster was an exception where cell populations has CD90bio with the highest enrichment 
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(Figure 6B).  These results also show that CD90bio, CD45 and CD49fpur are likely the most 

important markers among the 13 markers in the recovery of the HSC cells from this dataset 9, 10.  

 

Conclusions  

High-dimensional flow cytometry is an important technique of choice to define and 

identify different population cells and detect expression levels of thousands of proteins markers 9, 

10.  We recently developed a topological score (i.e. TopS) that generates large range of values 

which subsequently can be used to identify overwhelming pairs, like those between an affinity 

purified protein and an associated protein, in a quantitative matrix 5, 6. Thus, subnetworks with 

highly scored pairs can be selected and visualized with TopS 5, 6.  Previously, TopS was used on 

smaller matrices with thousands of rows for the analysis of networks, hence our goal was to 

extend its usage for the larger data sets like flow cytometry data. Here we tested the TopS shiny 

app for the analysis of a flow cytometry dataset described in Weber et al. 10 and we show the 

results for the Nilsson rare data 9, 10.  

We first demonstrated that TopS values can be used with different clustering approaches 

for the analysis of the flow cytometry data. Using Nilsson rare data 9, 10, we applied three 

clustering methods with different approaches with the special focus on the identification of the 

rare events. Given the difficulties of identifying small clusters in a large dataset, TopS in 

combination with these methods identified the smallest population of rare events in a separate 

cluster (Figure 6B and Supplementary Figure 2). We demonstrated that rare populations have 

different patterns as they are pulled by different markers.  As a result, they were separated in 

different clusters and not in a single cluster as one would expect. Using TopS we could identify a 

group of cells (Supplementary Figure 2 and Supplementary Table 4) in which the markers are 
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having the highest expression. This data show that markers involved in T-cell and stem cells like 

CD11b, CD123, CD3 and CD90bio have the highest expressions in cells in this dataset.  

However, when focusing only on the HSCs cells, we could show that TopS values revealed that 

the CD90bio, CD45, and CD49fpur are the most useful markers in the recovery of these cells and 

that a biological basis for the separation of HSCs into two clusters likely exists. These results 

could be beneficial for designing further experiments for the HSCs isolation.  TopS in 

combination with machine learning can be effective in marker reduction (i.e from 13 markers to 

three/four markers) in the analysis of the bone marrow cells.  Future work should focus on 

exploration of normalization methods and clustering approaches for a better representation of 

flow cytometry data. In conclusion, TopS 5, 6 could be an effective approach for processing flow 

cytometry data prior to further computational analysis with approaches like TDA 11-14, X-shift 15-

17, and t-Distributed Stochastic Neighbor Embedding (t-SNE) 18-20.   

 

Experimental 

Data set. To evaluate the TopS method, we selected for our analysis an available data set from 

experiments in immunology using multicolor flow cytometry 10, 25 . We have used a publicly 

available high-dimensional data set where cell population identities are known from the expert 

manual gating. The data was downloaded from the FlowRepository at 

https://flowrepository.org/id/FR-FCM-ZZPH. The data was manually gated cell population 

labels as the reference populations. The Nilsson rare data contain rare population from bone 

marrow cells from healthy donor with 44,140 number of cells, 13 cell-surface markers and 

358(0.8%) manually gated cells 10, 25.  Data was transformed using arcsinh and TopS method as 

https://flowrepository.org/id/FR-FCM-ZZPH
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described in Sardiu et al. 6.  Pre-processing of the original data included the application of an 

arc-sinh transformation with a standard factor of 150 (i.e. arcsinh(x/150)).  

Overview of the TopS method 

The TopS shiny app together with detailed documentation is freely available on github at 

https://github.com/WashburnLab/Topological-score-TopS-. Here, the raw data was assembled 

into a matrix in which the columns represent the individual cell-surface markers and rows 

represented pull-down cells. The elements of the matrix were represented by the transformed 

expression of cell-specific protein markers.  The data was next normalized on the columns, rows 

and total sum of the numerical values in the matrix.   

We used a simple model to calculate a score for each link between every cell and every marker 

in the matrix as follows:   

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑄𝑄𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙
𝑄𝑄𝑖𝑖𝑖𝑖
𝐸𝐸𝑖𝑖𝑗𝑗

,    (1)  

where Qij is the observed expression in row i and column j; and  

𝐸𝐸𝑖𝑖𝑖𝑖 = (𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖)(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠 𝑗𝑗)
(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠)

.    

Pearson correlation output 

Pearson correlation was used here to illustrate the similarity between the 13 cell-protein markers 

(Figure 2A).  Pearson correlation on the original/transformed data was calculated using R 

package cor(). The heatmap was used to illustrate the correlation between different samples 

using expression profiles.  The heatmap shows a data matrix where coloring gives an overview 

of the numeric differences between cell-surface protein markers. 

Clustering with topological data analysis. 

The input data for TDA were represented in a matrix, with each column corresponding to each 

cell-surface protein marker and each row corresponding to a cell where the values are expression 

https://github.com/WashburnLab/Topological-score-TopS
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profiles.  A network of nodes with edges between them was then created using the TDA 

approach based on the Ayasdi platform 11-14.   Nodes in the network represent clusters of cells. 

Nodes in the figures were colored based on the metric Neighborhood lens 1 and Neighborhood 

lens2. Two types of parameters were needed to generate a topological analysis: The first is a 

measurement of similarity, called metric, which measures the distance between two points in 

space (i.e. between rows in the data). The second are lenses, which are real valued functions on 

the data points. Lenses could come from statistics (mean, max, min), from geometry (centrality, 

curvature) and machine learning (PCA/SVD, Autoencoders, Isomap). In the next step the data 

was partitioned. Lenses were used to create overlapping bins in the data set, where the bins are 

preimages under the lens of an interval. Overlapping families of intervals were used to create 

overlapping bins in the data. Metrics were used with lenses to construct the network output. 

There were two parameters used in defining the bins. One is resolution, which determines the 

number of bins.  Higher resolution means more bins. The second is gain, which determines the 

degree of overlap of the intervals. Once the bins were constructed, we performed a clustering 

step on each bin, using single linkage clustering with a fixed heuristic for the choice of the scale 

parameter.  This gives a family of clusters within the data, which may overlap, and we then 

constructed a network with one node for each such cluster, and we connected two nodes if the 

corresponding clusters contain a data point in common. 

Clustering with X-shift via Vortex 

X-shift was running using graphical tool for cluster analysis of multiparametric datasets 15, 16, 26. 

The following parameters were used to run the X-shift application: transformation: none; noise 

threshold: yes, 1.0; feature rescaling: std; normalization: none; minimal Euclidean length: no; 

https://support.ayasdi.com/hc/en-us/articles/201735554
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distance measure: angular distance; density estimate: N nearest neighbors; K from 150 to 5, steps 

30; N: determine automatically; elbow point for automatic number of clusters was determined.  

Data analysis with t_SNE 

To spatially map the cells in the dataset we first applied a t-distributed stochastic neighbor 

embedding(t-SNE), a nonlinear visualization of the data 18-20. We then applied k-means 

clustering to this transformed matrix using the Hartigan-Wong algorithm and a maximum 

number of iterations set at 50000.  We used k=30 for the original/transformed data and k=38 for 

the TopS values to partition our data.  The number of clusters were generated from the X-shift 

tool using elbow point. All computations were run using R environment using k-means function 

for the partition and daisy function to compute all the pairwise dissimilarities (Euclidean 

distances) between observations in the dataset for the silhouette. 
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Figure legends. 

Figure1. Overview of the computational flow.  The computational approach started with the 

FSC files. The files were exported as CSV files. TopS shiny was used to produce the TopS 
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values. TDA analysis was used for the original/transformed data and TopS values. The X-shift 

and t-SNE clustering were used for the original/transformed data and TopS values.  

Figure 2. Pearson correlation and hierarchical clusters. (A) Pearson correlation was 

computed to show the similarity between cell-surface protein markers. For the 

original/transformed data (A) one hundred sixty-nine correlations are displayed in the figure. 

Hierarchical clustering was performed on the two matrices (i.e. original/transformed and Tops) 

with Euclidean distance and Ward as the method. In (B) and (C) the hierarchical clustering was 

performed on a 44,140 x 13 matrix using original/transformed data (B) and TopS values (C). The 

markers with the highest correlations in (A) were colored in red in (B) and (C). Note that in the 

shiny application the default parameters were set to Euclidian distance for the metric and Ward 

as the algorithm. 

 

Figure 3. TDA data analysis. A TDA network was constructed for the original/transformed data 

and TopS scores. Correlation was used as a distance metric with 2 filter functions: Neighborhood 

lens 1 and Neighborhood lens2. Resolution 51 and gain 2 were used for 3A-3D. Node size is 

proportional with the number of cells in the node. Markers are illustrated in the figure.  Cells are 

colored based on the rows per node for 3A and 3B.  Color bar: red: high values, blue: low values. 

Cells were colored based on the label for the 3C and 3D. Cells were separated in different 

clusters based on their patterns in the 13 markers. The rare events were separated in two different 

clusters when using TopS values (A) and they were in multiple clusters when 

original/transformed data was used (B). The CD90, CD45 and CD49fpur markers were enriched 

in these rare events as shown in (A). The gated cells were colored in red, yellow or green (i.e. 

depending on the average per node) while the other cells were colored in blue. In 3C, we 
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illustrated the rare events in the two clusters similar as in (A) while in (D) the rare events are 

spread throughout the network suggesting a poor separation. 

Figure 4. X-shift data analysis. X-shift(vortex) was used for the analysis of the 

original/transformed values and TopS values. Networks are colored by the label in Figure 4A 

and 4B. The gated cells are represented by the color blue.  

Figure 5. t-SNE data analysis. t-SNE analysis was implemented for the analysis of the 

original/transformed values and the TopS values. The networks were colored by the cluster 

numbers in Figure 5A and 5C. There are 38 clusters generated by t-SNE in (A) and 30 cluster in 

(C). In the case of Figure 5B and 5D, the networks are colored by the label. The gated cells are 

illustrated with the color red. 

Figure 6. Heat maps. In Figures 6A and 6B we are illustrating only the gated cells which were 

separated in two different clusters by the t-SNE when TopS values were used. These figures 

show that some rare events had different patterns, i.e. cluster 1 shows different patterns than 

cluster.  Consequently these have been separated in two clusters rather than grouped in a single 

cluster.  In (A), we represented the gated cells in the first cluster where several protein markers 

were enriched in the HSC cells. High TopS values were observed in the C45, CD49fpur and 

CD90 in (A) as compared with other markers.  In (B), we represented the gated cells in the 

second cluster (as determined by t-SNE) where the C90bio was highly express in these cells 

when compare with the other markers. The colors correspond to the TopS values, with blue 

representing low TopS values and red representing high TopS values.  Heat maps were created 

using ClustVis software 28. 
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Supplementary Figure 1. X-shift data analysis. X-shift(vortex) was used for the analysis of the 

original/transform values and TopS values. In (A) and (B) the networks are colored by the 

feature values. TopS provides wider range of numbers than in the than in the 

original/transformed data as shown by the color range. For example, TopS provides colors 

ranging from blue to red, while original/transformed values correspond to the colors ranging 

from green to red.  

Supplementary Figure 2. Clusters distribution. In this figure we illustrated the number of 

clusters detected by the t-SNE using TopS values and the number of cells in each cluster. t-SNE 

with TopS detected the smallest clusters consisting of gated cells with the marker C90bio 

enriched in these cells.  
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