Denoising large-scale biological data using network filters
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Large-scale biological data sets, e.g., transcriptomic, proteomic, or ecological, are often contami-
nated by noise, which can impede accurate inferences about underlying processes. Such measurement
noise can arise from endogenous biological factors like cell cycle and life history variation, and from
exogenous technical factors like sample preparation and instrument variation. Here we describe a
general method for automatically reducing noise in large-scale biological data sets. This method
uses an interaction network to identify groups of correlated or anti-correlated measurements that
can be combined or “filtered” to better recover an underlying biological signal. Similar to the pro-
cess of denoising an image, a single network filter may be applied to an entire system, or the system
may be first decomposed into distinct modules and a different filter applied to each. Applied to
synthetic data with known network structure and signal, network filters accurately reduce noise
across a wide range of noise levels and structures. Applied to a machine learning task of predicting
changes in human protein expression in healthy and cancerous tissues, network filtering prior to
training increases accuracy up to 58% compared to using unfiltered data. These results indicate the

broad potential utility of network-based filters to applications in systems biology.

Author Summary

System-wide measurements of many biological signals, whether de-
rived from molecules, cells, or entire organisms, are often noisy.
Removing or mitigating this noise prior to analysis can improve
our understanding and predictions of biological phenomena. We
describe a general way to denoise biological data that can account
for both correlation and anti-correlation between different measure-
ments. These “network filters” take as input a set of biological mea-
surements, e.g., metabolite concentration, animal traits, neuron
activity, or gene expression, and a network of how those measure-
ments are biologically related, e.g., a metabolic network, food web,
brain connectome, or protein-protein interaction network. Mea-
surements are then “filtered” for correlated or anti-correlated noise
using a set of other measurements that are identified using the net-
work. We investigate the accuracy of these filters in synthetic and
real-world data sets, and find that they can substantially reduce
noise of different levels and structure. By denoising large-scale bi-
ological data sets, network filters have the potential to improve the

analysis of many types of biological data.

INTRODUCTION

System-wide measurement data, whether molecular,
cellular, or ecological, are often contaminated by noise,
which can obscure biological signals of interest. Such
noise can arise from both endogenous biological factors
and exogenous technical factors. In molecular profiling
data, factors include reagent and protocol variability, re-
searcher technique, passage number effects, stochastic
gene expression, and cell cycle asynchronicity. This vari-
ability can mask underlying biological signals when mea-
suring cell state and how it changes under different con-

ditions, e.g., in development [1, 2], cancer progression [3],
and adaptive drug resistance [4, 5]. Noise has also been
implicated in the appearance of false signals and in the
non-replicability of some studies [6, 7]. Identifying and
correcting noisy measurements before analysis is likely
to improve the detection of subtle biological signals and
enable more accurate predictions in systems biology.

If correlations between related molecular signals are
stronger than correlations among sources of noise, then
distinct but related signals can be combined to denoise
biological measurements, at the expense of a smaller ef-
fective sample size. There are three common approaches
to identifying related signals: gene sets, subspace embed-
ding, and networks. In the first category, methods like
GSEA [8, 9] use the enrichment of genes within curated
sets to project the data onto biologically relevant fea-
tures. While gene sets can increase the power to iden-
tify differentially regulated processes, they are inherently
coarse, and can themselves be noisy, incomplete, or bi-
ased, and thus may not generalize to novel processes.
Subspace embedding techniques include PCA [10], clus-
tering [11], and neural network autoencoders [12, 13].
These methods can capture novel gene-gene correlations,
but they rarely incorporate biological information into
the feature extraction, which can limit both interpretabil-
ity and generalizability.

Molecular profiling data alone does not directly inform
which measurements should be more or less related to
each other. Networks that represent a molecular system’s
functional structure can provide this missing informa-
tion. For example, protein-protein interaction, metabolic
reaction, and gene regulation networks each encode pre-
cise and biologically meaningful information about which
groups of measured protein expression levels, metabo-
lite concentrations, or transcript levels are functionally



related, and hence which measurements should be com-
bined to filter out independent noise.

Among neighboring elements in the network, the un-
derlying signals may be correlated (assortative) or anti-
correlated (disassortative) [14]. For example, differential
expression tends to correlate between neighboring genes
in a regulatory network [15]. In contrast, inhibitory or
compensatory interactions [16, 17] will tend to produce
a disassortative relationship. Beyond pairs of measure-
ments, networks can also exhibit large-scale mixing pat-
terns among these interactions, such that a network may
be more or less assortative in some regions and disas-
sortative in others [18]. Existing network-based meth-
ods typically do not exploit this variability, and instead
assume globally assortative mixing by applying a single
filter to the whole network [19]. Mismatching the fil-
ter and the relationship type, e.g., an assortative filter
with anti-correlated measurements, can further obscure
the underlying biological signals. Here, we describe a
general network-based method that can automatically
detect large-scale mixing patterns and account for both
assortative and disassortative relationships.

These network filters are closely related to kernel-based
methods in image processing [20], in which groups of re-
lated pixels are transformed together to improve their
underlying visual signal. Most such techniques leverage
an image’s underlying grid geometry to choose which pix-
els have related signals for denoising. Networks lack this
geometry because a node’s interactions are inherently un-
ordered, whereas the left- and right-hand neighbors of a
pixel are clearly defined. This connection between net-
work filters and image processing is rich with potentially
useful ideas that could be adapted to process large-scale
biological data. For instance, community detection in
networks is a clear analog of the common “segmenta-
tion” step in image analysis, in which pixels are first par-
titioned into groups that represent the large-scale struc-
ture of an image, e.g., to separate foreground and back-
ground, or a car from the street, and then different filters
are applied to each segment (module).

We first describe two classes of network filters, which
combine measurement values from neighboring nodes to
calculate an assortative or disassortative denoised value,
and we describe a general algorithm that decomposes the
network into structural modules and then automatically
applies the most appropriate filter to the nodes and con-
nections within each module. When applied to synthetic
data where the true values and network structure are
known, these filters substantially reduce errors relative
to a baseline. In addition, we show how applying the
wrong filter with respect to the underlying biological re-
lationship can lead to increased errors. Finally, to test
the practical utility of these methods in a more realis-
tic setting, we investigate the impact of network filtering
on a machine learning task in which we predict changes
in human protein expression data when a healthy tissue

becomes cancerous. Using the network filters to denoise
the expression data before model training increases the
subsequent prediction accuracy up to 58% compared to
training on unfiltered data.

RESULTS

Network filters

A network filter is specified by a function f[i,x,G],
which takes as input the index of the measurement (node)
to be denoised, the list of all measurements x, and the
network structure G among those measurements. The
output is the denoised value ;. Here, we consider only
local network filters, which use the measurement values
of i’s immediate neighbors in G, denoted by the node set
v;, which are likely to be the most biologically relevant
for denoising. Each filter is applied synchronously, so
that all denoised values are obtained simultaneously to
prevent feedback within the denoising process.

We note that the idea of a network filter can naturally
generalize to exploit information, if available, about the
sign or strength of interactions in G. This information
can be encoded by an edge weight w;;, which can cap-
ture inhibitory or excitatory interactions that are strong
or weak. Below, we focus on the case in which this infor-
mation is not available.

When a measurement x; correlates with the values of
its neighbors z,, in the network (assortativity), a net-
work filter should adjust x; to be more similar to the
measured values of its neighbors (Fig. 1A). Among the
many choices of functions with this qualitative behavior,
the mean and median have useful mathematical proper-
ties, and connect with past work [19]. This setting is
analogous to a smoothing operation in image processing,
in which a pixel’s value is replaced by the mean or me-
dian of its value and its neighbors’ values. In the context
of a network, the mean and median “smoothing” filters
have the forms:
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where w;; =1 and k; is the degree of node i, reflecting
unweighted interactions, and

fo2i,x,G] = median[{z;, x,, w;;}] . (2)

When a measurement x; anti-correlates with the values
of its neighboring nodes, a network filter should adjust
x; to be more distant from its neighbors (Fig. 1A). This
setting is analogous to enhancing the contrast in an im-
age, e.g., when using the technique of unsharp masking
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FIG. 1. Schematics of Network Filters. Network filters are tools that denoise real-valued biological data using a bi-
ologically meaningful network to exploit the correlation (“smoothing”)or anti-correlation (“sharpening”) among neighboring
measurements. A. A measurement x; and its neighboring values in network, where the color intensity is proportional to the
measured value. In applying the smooth filter, z; is adjusted to be more similar to its neighbors; in applying the sharp filter, x;
is adjusted to be more distant from its neighbors. B. Measurements can also first be partitioned into groups (dashed line) by de-
tecting structural modules within the network, and then different filters applied to different modules, ignoring between-module
edges, e.g., if the signals are assortative in some communities and disassortative in others.

to enhance the high frequency signal in an image to make
it sharper. In the context of a network, this “sharpening”
filter has the form:

fo[i,x, G] :a(xi 7f0,1[i,xa G])+)_( (3)

where « is a constant scaling factor, and X = n=! >, x; is
the global mean. Because « is a free parameter, its value
should be determined de novo for each data set. For the
data sets in this study, we empirically determined the
optimal o = 0.8 using cross validation.

When a system exhibits large-scale mixing patterns of
assortative and disassortative relationships, a network
should first be partitioned into structural modules us-
ing a community detection algorithm, so that relation-
ships within each module are more homogeneous. Let
§= A(G) denote the result of applying a community de-
tection algorithm A to network G, and say that G, de-
notes the subgraph of nodes and connections within the
module s; that contains node i. Given such a modular
decomposition s, a filter can then be applied to only the
subgraph G, that contains measurement 7. As a result,
relationships that span the boundary between two mod-
ules will have no influence on the filtered values (Fig. 1B).

After partitioning, the same filter can be applied to
every community, or sharp and smooth filters can be ap-
plied to communities with more or less assortative values,
respectively. We define such a “patchwork filter” as:
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where r,, is the standard assortativity coeflicient calcu-
lated over observed values within community s; [14]. Any
community detection algorithm can be used for A. Here,
we use the degree-corrected stochastic block model or
DC-SBM [21] or the “metadata-aware” version of DC-
SBM [22], which are considered state-of-the-art meth-
ods [23].

Tests using synthetic data

We evaluated the performance of these network filters
in two controlled experiments with either non-modular or
modular synthetic networks, and varying structures and
levels of noise.

In the first experiment, we generated simple random
graphs with heavy-tailed degree distributions (see Meth-
ods) and assigned each node a value drawn from a Normal
distribution with mean p = 100 and standard deviation
o = 10. These values were drawn in such a way that
the assortativity coefficient of the network ranged from
r € [-0.8,0.8] (see Methods). As a result, connected
values ranged from being highly anticorrelated to highly
correlated. To simulate independent measurement noise,
we permuted the values among a uniformly random 25%
of nodes, and then denoised these “corrupted” values.
We find qualitatively similar results for other choices of
the fraction permuted. Results report the mean abso-
lute error (MAE) of a denoised value, averaged over 5000
replications.

Without a filter, the average error of a “denoised” value
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FIG. 2. Filter performance on synthetic networks. Network filter tests on synthetic graphs with varying structures and
known noise. A. The Mean Absolute Error (MAE) of network filters on the permuted nodes as a function of the assortativty
coeflicient of 5,000 instances of noisy non-modular graphs. The smooth filters (mean and median) perform best on assortative
data (r > 0), while the sharp filter is optimal for disassortative data (r < 0). B. The MAE of network filters on the permuted
nodes as a function of the fraction of communities with assortative data values for 100 instances of noisy modular graphs. Each
network instance has 5 communities and we vary how many communities have assortative vs. disassortative data values with
a moderate assortativity coefficient |r| € [0.4,0.7]. The shaded areas indicate 99% bootstrapped confidence intervals.

is independent of the underlying correlation (assortativ-
ity) among connected values, because this nearby infor-
mation is left unexploited (Fig. 2A). In contrast, apply-
ing a network filter to denoise the corrupted values can
substantially improve their accuracy, depending on how
strongly coupled a measurement’s true value is with its
neighbors’, and what filter is applied to recover that in-
formation. For the particular parameters of this exper-
iment, filtering can reduce the error by 37-50% over no
filter, and by roughly 20% even in the case of uncorrelated
signals (r = 0), due to a regression to the mean effect.
Error reductions are largest when a network “smoothing”
filter is applied to strongly assortative signals, and when
a network “sharpening” filter is applied to strongly dis-
assortative signals. That is, denoising works best when
the underlying signal structure is matched with the as-
sumptions of the filter.

When the wrong filter is applied, however, error rates
can increase relative to not filtering. In such a case, the
filter creates more errors in the data than it corrects.
On the other hand, this “mismatch” penalty only de-
grades the overall accuracy at very high levels of cor-
relation (anti-correlation) among the signals, where its
magnitude exceeds the natural benefits of filtering at all
(Fig. 2A). When the underlying correlations are moder-

ate (Jr] < 0.4), the average benefits of network filtering
will tend to outweigh the average error induced applying
the wrong filter.

In the second experiment, we again generated simple
random graphs with heavy-tailed degree distributions,
but now also with modular structure, which better cap-
tures the structure of empirical biological networks (see
Methods). These modules denote groups of nodes that
connect to other groups in statistically similar ways. For
instance, protein interaction networks can be decom-
posed into groups with similar biological function, and
these groups can have distinct types or levels of signal
assortativity [18]. In this situation, applying a single fil-
ter to all parts of the network could introduce bias in
the denoised values, by pooling nearby measurements in-
discriminately, compared to filtering modules indepen-
dently.

Here, we plant x = 5 modules in the same kind of syn-
thetic network as our first experiment, set each module
to have a different mean value, and then vary the fraction
of modules that have a positive assortativity coefficient
|r| € [0.4,0.7] vs. a negative coefficient (see Methods).
This kind of signal heterogeneity across modules miti-
gates the denoising benefits of a simple regression to the
mean, and provides a harder test for denoising methods.



Given these choices, we generated values within a mod-
ule, and simulated measurement noise as in the previous
experiment (see Methods). In addition to the previous
filters, we also apply the “patchwork” filter in this exper-
iment.

As before, the average error of a denoised value with
no filter provides a consistent baseline against which we
may assess improvements from filtering (Fig. 2B). And
similarly, the error for both the smooth and median fil-
ters falls steadily as the fraction of modules with assor-
tative signals increases. For the particular parameters of
this experiment, the median filter performs roughly 20%
better than the mean filter, reflecting the median’s well-
known robustness to outliers, which arise here from the
planted signal heterogeneity.

The global sharp filter works poorly for all ratios when
applied uniformly across the whole network (Fig. S1).
Because each module has a distinct mean value, the
global sharp filter generates errors by assuming the global
mean is a good representation of the whole network.

In contrast, the patchwork filter is substantially more
accurate than any other filter, and exhibits less dynamic
range in its error, across different degrees of modular as-
sortativity (Fig. 2B). For the particular parameters of
this experiment, the patchwork filter reduces the mean
error by 32-40% compared to no filtering, and by 0-37%
compared to median or mean filtering. Only when all of
the modules are assortative does the median filter match
the patchwork filter’s accuracy. This advantage arises be-
cause the patchwork filter avoids applying the same filter
to different types of underlying signals, if the structure
of those signals correlates with the structure of the net-
work (as it does here). That is, applying a single filter to
a modular network can introduce errors when denoising,
if the local mixing patterns across modules are hetero-
geneous. Pairing a community detection algorithm with
network filters can avoid this problem by identifying large
groups of nodes that should be filtered together, in much
the same way that different image filters can be applied
after first segmenting an image into distinct regions.

Denoising protein expression levels in cancer

To evaluate the utility of network filters for denois-
ing biological data in realistic settings, we construct
a machine learning task in which we predict the pre-
cise changes in human protein expression levels when a
healthy tissue becomes cancerous (see Methods). This
task has potential applications to detecting pre-cancerous
lesions [24, 25]. We then quantify the improvement in
out-of-sample prediction accuracy when using a network
filter to denoise the input expression data before model
training, compared to training on unfiltered data.

For this experiment, protein expression data are drawn
from the Human Protein Atlas (HPA) [26], which pro-

vides large-scale immunohistochemistry (IHC) measure-
ments for over 12,000 human proteins in 20 tissues,
each in both healthy and cancerous states. Antibody
based methods like THC are known to be noisy and
prone to variation from uncontrolled experimental pa-
rameters [27], which makes this data set a realistic ex-
ample of noisy large-scale biological data. A standard
principle component analysis (PCA) of the raw HPA ex-
pression data reveals that the first component correlates
with variations in tissue type, while the second correlates
with differences between tissue state (healthy vs. cancer-
ous) (Fig. 3A). Some tissues, however, change more than
others, and the changes are not always in the same direc-
tion. Hence, predicting the precise changes represents a
useful and non-trivial machine learning task that network
filtering may improve.

For the network filters, we use a comprehensive
map of the human protein-protein interaction network
(PPIN) [28], which combines data from several interac-
tome databases and is curated for biological interactions
with high levels of evidence. While this network rep-
resents a broad collection of authoritative interactome
data, the completeness of the human PPIN is still un-
certain [29], and we do not regard this network as it-
self noise-free. Taking the intersection of proteins con-
tained in both expression data and interaction network
(see Methods) yields data on n = 8,199 proteins in a
network with m = 37,607 edges.

In the machine learning task, we perform a K-nearest
neighbor regression on an embedded representation of
the protein expression data to learn how expression lev-
els change with tissue state (see Methods). We evaluate
the trained model via the MAE between the predicted
and the actual changes in protein expression under leave-
one-out cross validation (in which we train on 19 tissue
pairs, and predict on the 20th) with or without denois-
ing the expression data with a network filter prior to
model training. Because the number K is a free parame-
ter that controls the complexity of the learned model, we
evaluate the robustness of our results by systematically
varying K. For the patchwork filter, we partitioned the
graph into 10 modules using the DC-SBM [21] and apply
the mean filter within each module. In this data, most
measured values are weakly assortative across protein in-
teraction edges, and only a few detected modules exhibit
any disassortative signal, and even then their internal r
is relatively close to zero (Fig. S2). In this situation,
the smooth filter typically outperforms the sharp filter
(Fig. 2A).

Across model complexities, we find that denoising be-
fore model training using any type of smoothing network
filter, patchwork or otherwise, provides a substantial re-
duction in prediction error relative to training on unfil-
tered data (Fig. 3B, Fig. S3).

Error rates tend to decrease with greater model com-
plexity K, suggesting that more complex models are bet-
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FIG. 3. Denoising to Predict Protein Expression Changes in Healthy and Cancerous Tissues. Tests of the network
filters on a cancer protein expression prediction task. In this test, we predict the protein expression changes that occur when a
healthy tissue becomes cancerous, quantified by the out-of-sample prediction accuracy with and without using network filters
to preprocess the data before training. A. The first two principal components of immunohistochemistry data of healthy and
cancerous tissues in the Human Protein Atlas. Arrows connect a healthy tissue (blue) to the corresponding cancer (red).
The first component captures variations across tissues, while the second captures variation in state (healthy vs. cancerous).
Predicting the precise changes between healthy and cancerous tissues is a non-trivial task. Therefore, we perform a K-Nearest
Neighbors regression on the HPA data, with and without preprocessing with network filters. We evaluate the model by leave-
one-out cross validation, and calculating the MAE of the predicted and actual data values for the left out healthy-cancerous
pair. B. All network filters improve the MAE compared to the no-filter baseline. We compare this across different choices of
K, as it is a free parameter. The shaded areas represent 99% bootstrapped confidence intervals

ter able to capture variations in the precise expression
level changes between tissue states. This decrease in er-
ror also occurs without first filtering the expression data.
However, the improvement in prediction accuracy from
increasing the model complexity without filtering is mod-
est (5.2% at K = 6) compared to the improvement from
first applying the best network filter (58.2% at K = 1,
and 57% at K = 6).

We note that in this real-world setting, the patchwork
filter, which first partitions the protein interaction net-
work into protein groups, performs no better than the
simple median filter, and the simple mean filter outper-
forms both (improving the MAE by 38% at K = 6).
This behavior suggests that the partition produced by
the off-the-shelf community detection algorithm did not
correlate sufficiently strongly with the underlying vari-
ation in biological signals to correctly localize the most
relevant adjacent measurements, in contrast to our con-
trolled experiments (Fig. 2B). Developing community de-
tection algorithms that choose more biologically relevant
partitions may be a useful direction of future work.

DISCUSSION

Large data sets of biological signals, such as system-
wide measurements of molecular concentrations, species
abundances, or activation levels, are often noisy. How-
ever, these measurements are not fully independent be-
cause they reflect the dynamics of a single interconnected
system. Using a network to represent the underlying bio-
logical relationships among a set of measurements, we can
leverage the size of these data sets to systematically de-
noise many measurements at once, improving the data’s
utility for understanding the structure and dynamics of
complex biological systems or making accurate predic-
tions in systems biology.

These “network filters” are a flexible tool and can ex-
ploit a wide variety of network data, including networks
of molecular binding interactions, gene regulations, pro-
tein interactions, metabolic reactions, cellular interac-
tions, and even ecological species interactions. Network
filters can be extended to exploit information about the
sign or strength of interactions or to allow the type of
interaction to vary across different modules within the



network. These filters can also be applied to networks
of any size, ranging from local signaling pathways like
MAPK or WNT to entire protein interaction networks or
connectomes. In fact, any network that correlates with
the underlying causal structure of a set of measured vari-
ables could potentially be used as a filter. By exploiting
these underlying relationships, a network filter pools cor-
related information, which mitigates independent noise,
in much the same way that image processing techniques
use information from nearby pixels to denoise an image.

Experiments using synthetic data with realistic biolog-
ical network structures and a variety of underlying sig-
nals indicates that network filters can substantially re-
duce noise in large biological data sets across a broad
range of circumstances (Fig. 2A). The greatest benefit is
obtained when the type of filter is matched to the under-
lying relationship among the signals, e.g., smoothing for
assortative signals (correlation) and sharpening for dis-
assortative signals (anti-correlation). However, for mod-
est levels of correlation, even the wrong kind of filter
yields some benefit because of a regression to the mean
effect, in which combining several related signals filters
out more noise than it introduces through bias. When
signal types are heterogeneous across the network, so that
the strength or direction of the correlation differs in dif-
ferent parts of the network, a “patchwork” filter performs
better. In this approach, we first partition the network
into smaller, more homogeneous modules (groups of in-
terrelated measurements) and then apply filters indepen-
dently to the measurements now localized within each
module (Fig. 2B).

In a more realistic setting, in which we train a machine
learning algorithm to predict changes in human protein
expression levels when healthy tissue becomes cancerous,
applying a network filter based on a high-quality protein
interaction network before model training substantially
improves prediction accuracy, compared to training on
unfiltered data (Fig. 3B). In this experiment, the protein
interaction network itself is not noise-free [29], indicating
that filtering using an imperfect network can be better
than not filtering at all.

There are a number of potentially valuable directions
for future work on network filters, which may improve
their error rates or adapt them to more complicated set-
tings or tasks. Techniques from image processing, both
simple and advanced, represent a particularly promising
direction to explore [30-32]. For instance, here, we only
considered filters that combine measurements associated
with directly adjacent nodes. As a result, the denoised
values associated with low degree nodes in the network
derive from a relatively smaller number of measurements,
and hence are likely to have larger residual noise than
will higher degree nodes. Modifying the network filter
for low degree nodes to look beyond nearest neighbors,
e.g., to ensure a minimum number of pooled measure-
ments per node, may provide better guarantees on the

accuracy of the denoised value. Examples of this type of
technique in image processing include the Gaussian fil-
ter [33] and methods that weight nodes by personalized
PageRank [34] or another random walk method.

Image segmentation, in which an image is first parti-
tioned into visually distinct pieces, e.g., separating the
foreground from the background, is a common prepro-
cessing step in image analysis. The patchwork filter con-
sidered here is a simple adaptation of this idea, but it
relies on an off-the-shelf community detection algorithm
to partition the nodes, considers different modules in-
dependently, and ignores connections that run between
modules. While this approach should retain the most in-
formative relationships among the measurements it also
serves to reduce the degrees of many nodes, which may
lessen the benefits of filtering, as described above.

Developing filters that utilize the edges between mod-
ules could mitigate the induced low-degree effects that
come from applying a patchwork filter to account for sig-
nal heterogeneity in the system. Such between-module
edges should likely be considered separately from within-
module edges, e.g., by adjusting their weights w;; to more
accurately capture the character of the particular sig-
nal relationship between the modules containing nodes 4
and j.

The benefits of a patchwork filter necessarily depends
on how closely the network partition correlates with the
underlying biological structure of the system. Off-the-
shelf community detection algorithms may not always
provide such partitions [35], and in some settings, de-
veloping application-specific partitioning algorithms, or
algorithms that can exploit biologically meaningful node
attributes [22], may improve the behavior of a patchwork
filter.

Finally, the network filters defined here make few spe-
cific assumptions about the underlying noise-generating
process itself. In specific applications, much more may
be known about the direction, magnitude, and clustering
of errors across large-scale measurements. For instance,
in molecular profiling data, endogenous biological fac-
tors like cell cycle effects likely induce distinct noise pat-
terns compared to exogenous technical factors like sample
preparation or instrument variation. Developing more
application specific error models that could be combined
with network filters may provide more powerful denoising
techniques than the general filters described here.

METHODS
Synthetic data with known noise and structure

In the first experiment we generate simple non-modular random
graphs using the Chung-Lu (CL) model [36-38] with n = 100 nodes
and a degree distribution that, in expectation, follows a power law
distribution Pr(k) o< k~ with parameter a = 3 for k > 1. If the
generated degree sequence included a node with degree k > 17, a



new degree sequence was sampled. This choice ensured that no
star-like subgraphs were created. In our analysis, only nodes in the
largest connected component were included. This choice mitigates
the bias experienced by low degree nodes, which are the most likely
nodes to exist outside the largest component.

For each CL synthetic network, we generate node values using
the procedure described below. We vary the assortativity coeffi-
cient r € [—0.8,0.8] while drawing values from a Normal distribu-
tion with mean and variance 4 = o2 = 100. We simulate measure-
ment noise by taking a random permutation of a uniformly random
25% of the node values. We then apply each of the networks fil-
ters (mean, median, sharp) to these noisy values, and calculate the
mean absolute error (MAE) of the original and denoised values.
Results are averaged over 5000 repetition of this process.

In the second experiment, we generate simple modular random
graphs using the degree-corrected stochastic block model DC-SBM
(DC-SBM) model [21], with £ = 5 communities of n, = 100 nodes
each (n = 500 nodes total), and the same degree distribution as the
non-modular case. The network’s modular structure is specified
using the standard “planted partition” model [21], in which the
community mixing matrix w,s is given by a linear combination of
a perfectly modular graph and a random graph, and has the form
wrs = AwBinted 4 (1 _ y)prandom with \ = 0.85.

For each DC-SBM network, we generate node values with the fol-
lowing properties: (i) the distribution of values within each module
are drawn from a module-specific Normal distribution with mean
u = {110, 80, 60,40,20} and variance o2 = 25, (ii) ' € [0,5] com-
munities are assigned to have negative assorativity coefficients, and
(iii) the within-community assortativity coefficients are chosen uni-
formly at random on the interval |r| € [0.4,0.7]. These choices con-
struct a hard test in which a filter’s accuracy is effectively penalized
if it uses nodes outside a given community to denoise a particular
value. For the patchwork filter, we partition the network using
the “metadata-aware” DC-SBM with & = 5 communities [22], us-
ing the observed measurements as metadata. Noise is induced and
accuracy is assessed as in the non-modular case, except that the
nodes are randomly permuted within each module rather than the
whole network.

Generating synthetic correlated measurements

‘We generate node values with a specified assortativity coefficient
r+«, for a specified adjacency matrix A, using Markov chain Monte
Carlo (MCMC). The assortativity coefficient r is defined as

225 (Aij — kikj /2m) wix;
245 (Ridsj — kikj/2m) ziz;

r =

where k; is the degree of node ¢, x; is the value associated with
node i, 2m = Zij A;; is twice the number of edges in the network,
A;; is the entry in the adjacency matrix for nodes 7 and j, and d;;
is the Kronecker delta function.

Given a network A, a desired assortativity coefficient r., and a
node value distribution Pr(z), we generate a set of node values as
follows.

1. Assign each node a value drawn iid from Pr(z).

2. Calculate the current assortativity coefficient rg.
3. Sett=1.
4

. While the difference between the desired and current assor-
tativity coefficient A = |ry — r«| > B, a specified tolerance,
do:

e Pick a node ¢ uniformly at random and assign it a new
value z} drawn iid rom Pr(z).

e Calculate the corresponding assortativity coefficient r¢
and difference A’ = |ry — ry|.

e If the new value does not improve the assortativity,
i.e., A’ > A restore z;. Otherwise, increment t.

5. Return the node values x with the desired assortativity co-
efficient, rx.

In our experiments, we set 5 = 0.009.

Human protein expression and interaction

Protein expression data were drawn from the Human Protein
Atlas (HPA) version 16 [26], which details protein expression in hu-
man tissues by large scale immunohistochemistry, for over 12,000
proteins in 20 tissue types, each in a healthy and cancerous state.
Human protein interaction (PPIN) data were drawn from the
HINT database [28], which combines data from several interactome
databases and is curated for biological interactions with high levels
of evidence. The HINT network contains n = 12,864 proteins and
m = 62,435 undirected, unweighted edges.

To construct the network filter, we first map the data from the
HPA to the PPIN. HPA proteins are indexed by their Ensembl
IDs, while HINT proteins are indexed by their Uniprot IDs. A map
from Ensembl IDs to Uniprot IDs was constructed using the HGNC
BioMart tool. If a node had multiple mapped expression values, we
averaged them. We allow protein expression values from HPA to
map to multiple nodes if the Ensembl ID maps to multiple nodes in
the PPIN. If the gene expression value does not map to any nodes
in the PPIN, we discard these as they cannot be de-noised by the
network filters. There is one protein in the cancer dataset and 283
proteins in the healthy tissue dataset missing protein expression
values in no more than 2 cancers or healthy tissues. For these
cases, we impute the missing data from the same protein in another
cancer or healthy tissue uniformly at random (impute healthy from
healthy, and cancer from cancer).

After keeping the largest connected component of nodes with
associated HPA data values, these preprocessing steps produce a
network with n = 8,199 proteins with THC expression information
across all 20 tissue types and both healthy and cancerous states,
and m = 37,607 edges. The included healthy-cancerous tissue pairs
are: breast, glioma, cervix, colorectal, endometrial, testicular, thy-
roid, renal, liver, lung, lymphoma, pancreas, prostate, skin, stom-
ach, melanocyte, urinary, head and neck, ovary, carcinoid. For
the healthy tissues, the protein expression values of specific cells
types that can give rise to the corresponding cancer were averaged
together to form one vector (Table S1).

Predicting expression changes in human cancer

The machine learning task is to predict the changes in protein
expression levels when a human tissue changes types from healthy
to cancerous. We use K-nearest neighbors regression to learn a
model that can predict these changes when given the expression
levels of a healthy tissue (Fig. 4). We train and evaluate the model
using leave-one-out cross validation, in which the model is trained
on the observed changes in 19 healthy-cancerous tissue pairs, and
is tested on one unobserved pair. We first train and evaluate the
model on unfiltered data, and then compare its accuracy to a model
where we apply a network filter to the expression data prior to
training.

First, we applied principal components analysis (PCA) on the
training set of 19 healthy tissue protein vectors as a feature extrac-
tion method. Next, using the embedded PCA space learned from
the training set, we project the held-out healthy sample into the
same PCA space. We then determine the K-nearest neighbors of
the held-out healthy tissue by calculating the Euclidean distance
of the first four principal components between this point and all
other healthy tissues.
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FIG. 4. Schematic of K-Nearest Neighbors Regression Framework. We designed a weighted K-nearest neighbors
regression framework to predict the protein expression changes a healthy tissue would undergo when becoming cancerous, given
a vector of protein expression profile of a healthy tissue. First, we extract features from the training set of 19 healthy tissue
protein expression vectors by PCA. Second, we project the left out healthy vector down to the same PCA space, and third,
determine K-nearest neighbors to use for the prediction task. Fourth, we extract the features from the 19 delta vectors by PCA,
and fifth, predict the delta vector for the left-out healthy sample by taking the weighted average of the K-nearest neighbor’s
delta vectors. Finally, sixth, we project the predicted delta vector from PCA space back to a vector of protein expression values

to calculate the error.

Given this identification of which healthy tissues are most simi-
lar to the left-out healthy tissue, we predict the protein expression
changes for the held-out observation. We calculate the expression
changes between cancerous and healthy tissues, which we call a
“delta” vector. Then, we perform PCA on the 19 delta vectors to
extract features. The weighted average of the delta vectors cor-
responding to the K-nearest neighbors learned from the healthy
tissues are averaged together, where the weight is proportional to
the inverse of the Euclidean distance to the held-out healthy tissue.
Finally, we project the predicted delta vector from four principal
components back to the n = 8,199 proteins and calculate the mean
absolute error (MAE) of this vector and the actual delta vector.

The basic networks filters evaluated in this task have the form
given in the main text. For the patchwork filter, we use the DC-
SBM to partition the PPIN into k = 10 communities, and apply
the mean filter within each community.
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