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SUMMARY 
 
Adaptive immunity is driven by the ability of lymphocytes to undergo V(D)J recombination and generate 

a highly diverse set of immune receptors (B cell receptors/secreted antibodies and T cell receptors) 

and their subsequent clonal selection and expansion upon molecular recognition of foreign antigens. 

These principles lead to remarkable, unique and dynamic immune receptor repertoires1. Deep 

sequencing provides increasing evidence for the presence of commonly shared (convergent) 

receptors across individual organisms within one species2-4. Convergent selection of specific 

receptors towards various antigens offers one explanation for these findings. For example, single 

cases of convergence have been reported in antibody repertoires of viral infection or allergy5-8. Recent 

studies demonstrate that convergent selection of sequence motifs within T cell receptor (TCR) 

repertoires can be identified on an even wider scale9,10. Here we report that there is extensive 

convergent selection in antibody repertoires of mice for a range of protein antigens and immunization 

conditions. We employed a deep learning approach utilizing variational autoencoders (VAEs) to model 

the underlying process of B cell receptor (BCR) recombination and assume that the data generation 

follows a Gaussian mixture model (GMM) in latent space. This provides both a latent embedding and 

cluster labels that group similar sequences, thus enabling the discovery of a multitude of convergent, 

antigen-associated sequence patterns. Using a linear, one-versus-all support vector machine (SVM), 

we confirm that the identified sequence patterns are predictive of antigenic exposure and outperform 

predictions based on the occurrence of public clones. Recombinant expression of both natural and in 

silico-generated antibodies possessing convergent patterns confirms their binding specificity to target 

antigens. Our work highlights to which extent convergence in antibody repertoires can occur and 

shows how deep learning can be applied for immunodiagnostics and antibody discovery and 

engineering. 



RESULTS 1 

Targeted deep sequencing of the rearranged BCR locus reveals the antibody repertoire of B cells in a given 2 

tissue or cell population11. Here we used deep sequencing to analyse the antibody repertoires in the bone 3 

marrow of 45 BALB/c mice, which were divided into four separate cohorts immunized with protein antigens 4 

of either ovalbumin (OVA), hen egg lysozyme (HEL), blue carrier protein (BCP) or respiratory syncytial virus 5 

fusion protein (RSV-F). OVA, HEL and BCP cohorts were further subdivided into groups receiving zero, one, 6 

two or three booster immunizations; serum enzyme-linked immunoabsorbance assays (ELISA) confirmed 7 

antigen-specific antibody titers in all mice, with mice receiving only a primary immunization exhibiting 8 

substantially weaker titers (Supplementary Table 1). RNA was extracted in bulk from bone marrow cells and 9 

variable heavy (VH) chain IgG sequencing libraries were prepared using a two-step RT-PCR protocol, which 10 

included molecular barcoding for error and bias correction12. Libraries were sequenced on an Illumina MiSeq, 11 

quality processed and aligned, yielding across all mice a total of 243’374 unique combinations of all three VH 12 

complementarity-determining regions (CDRHs) (Supplementary Fig. 1a, b). Similar to previous studies3, we 13 

observed the occurrence of public clones (defined here as identical CDRH1-CDRH2-CDRH3 amino acid (a.a.) 14 

sequences that occur in more than one mouse). However, the occurrence of public clones was not limited by 15 

antigen exposure, as on average 16% of the sequences found in a given repertoire were shared with 16 

repertoires outside the respective antigen cohort, whereas only ~4% were limited to a specific antigen cohort 17 

(Supplementary Fig. 1c). 18 

 19 

To evaluate to which extent convergent selection occurs that is beyond the occurrence of public clones, we 20 

developed a deep learning workflow which utilizes CDRH1, CDRH2 and CDRH3 and their appropriate 21 

sequence combinations as input to a VAE model. Deep generative models using variational inference have 22 

recently been used for TCR repertoire modelling and protein fitness prediction13-15. Unlike this previous work 23 

however, we assume that sequences in latent space are generated by a GMM, which enables the VAE to 24 

estimate the densities of different clonal lineages and signatures more accurately (Fig. 1). The VAE consists 25 

of deep neural networks which are used to encode and decode sequences and are optimized with respect 26 

to the GMM prior and their ability to reconstruct the input sequences (Extended Data Fig. 1), with similar 27 

sequences falling into the same cluster and closely related clusters occupying similar regions in latent space 28 

(see Methods). Increasing the dimensionality of the latent encoding and the number of clusters improved the 29 

reconstruction ability of the model; by using a ten-dimensional latent space with 2,000 clusters, we were able 30 

to achieve a reconstruction accuracy of 93.4% (Extended Data Fig. 2). We used principal component 31 

analysis (PCA) to visualize the latent encodings and found that highly similar sequences did indeed map to 32 

the same cluster and areas within the latent space (Fig. 2a). The VAE model also captured important 33 

information such as CDRH3 length and variable germline segment (V-gene), whereas similar V-gene families 34 

were mapped into similar areas of the latent space (Extended Data Fig. 3). While visual inspection revealed 35 

areas of possible antigen-associated sequence convergence (Fig. 2a, Extended Data Fig. 4), we aimed to 36 

quantify the amount of convergence by identifying latent clusters that were significantly associated for each 37 

respective antigen, and whether these convergent sequences could be used to predict the antigen exposure 38 

of a given mouse. Sequences were grouped into their respective clusters and the recoded repertoires were 39 

used to train and cross-validate a linear, one-versus-all SVM classifier of antigen exposure (Supplementary 40 
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Fig. 2). It is important to note that the VAE allows cluster assignments of unseen data and thus an independent 41 

embedding could be trained for each fold. In order to establish a baseline for this workflow, we also trained 42 

a linear SVM on the occurrence of public clones (exact CDRH1-CDRH2-CDRH3 a.a. sequence matches), 43 

which yielded an accuracy of 42% for prediction of antigen exposure (5-fold cross-validation). In contrast, 44 

when using VAE-based cluster assignments and subsequently encoding repertoires based on cluster 45 

enrichment, the resulting classifiers were able to achieve a prediction accuracy of over 80% (Fig. 2b, 46 

Extended Data Fig. 5 and 6). We then performed a simple, non-parametric permutation test for each cluster 47 

and each cohort at a significance level of α=0.05. Bonferroni correction was conducted in order to account 48 

for multiple testing, yielding 60 (BCP, 6’664 sequences), 61 (RSV-F, 7’064 sequences), 68 (OVA, 7’389 49 

sequences) and 73 (HEL, 9’628 sequences) significantly enriched convergent antibody clusters in each 50 

cohort. While the exact number of convergent clusters and sequences slightly varies with the number of latent 51 

space clusters and the initialization of the VAE, the anti-correlation between protein antigen size and 52 

complexity and identified sequences suggests that convergence may be driven by the presence of a few 53 

immunodominant epitopes. Closer inspection revealed that not every mouse expressed all of their respective 54 

convergent clusters, but rather a smaller, yet still predictive subset (Fig. 2c). Furthermore, mice that only 55 

received a primary immunization without any subsequent booster immunization also exhibited a decreased 56 

enrichment of convergent clones (Fig. 2c, area between dashed red lines), a finding that correlates well with 57 

the measured serum titters (Supplementary Table 1). Example logos generated by sequences mapping into 58 

the same cluster visualize how the VAE model is able to identify diverse and biologically meaningful groupings 59 

(Fig. 2d). Furthermore, comparing aggregated sequence logos to those generated from single repertoires 60 

shows the potential diversity of the convergent sequence space and highlights that convergence is not limited 61 

only to highly similar, public CDRHs (Extended Data Fig. 7). As an additional, yet simple example of 62 

convergence, we observed a frequently occurring asparagine (N) residue in the first position of CDRH3 of 63 

multiple RSV-F-associated clusters (Fig. 2d). 64 

 65 

In order to confirm that antigen-associated sequence convergence corresponds to antigen binding, we 66 

utilised a mammalian cell (hybridoma) antibody surface display and secretion system coupled to CRISPR-67 

Cas9-mediated library integration16. An antibody library was generated using a small subset of convergent VH 68 

sequences derived from different clusters combined with a variable light chain (VL) library cloned from cohort-69 

matched mouse repertoires (Extended Data Fig. 8). ELISAs performed on the supernatant of the library cell 70 

lines demonstrated that these convergent pools possessed cognate antigen specificity (Fig. 3a). We then 71 

proceeded to more closely investigate VH variants from the OVA and RSV-F pools through single clone 72 

isolation by fluorescence-activated cell sorting (FACS) (Supplementary. Fig. 3).  The antigen-specific binding 73 

of monoclonal cell lines was confirmed by flow cytometry (Fig. 3b) and ELISA (Supplementary Fig. 4) and 74 

their VH chains were identified by sequencing (Supplementary Fig. 5). This procedure allowed us to confirm 75 

antigen specificity of 6 (out of 6 selected) OVA and 3 (out of 4 selected) RSV-F convergent VH sequences 76 

(Extended Data Table 1). VH chains were able to pair with VL chains from a different mouse repertoire, 77 

additionally highlighting convergence with respect to VH chain-dominated binding (Supplementary Tables 78 

2-5). While all antigens were associated with a variety of V-gene germlines, we noticed that convergent 79 
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antibodies were utilizing different V-gene segments in an antigen-dependent manner, highlighting that the 80 

original V-gene germline contributes to convergent selection (Fig. 3f, Extended Data Fig. 9).  81 

 82 

In order to confirm that antibody sequence variants mapping to the same convergent cluster were also 83 

antigen-specific, we recombinantly expressed 12 convergent VH variants (derived from other mice immunized 84 

with the same antigen) from the cluster mapping to one of the confirmed RSV-F binders (RSV3, 85 

Supplementary Fig. 6). These 12 convergent variants were expressed with the same VL of RSV3. Flow 86 

cytometry confirmed that all 12 of these convergent variants were indeed antigen-specific (Fig. 3c). Using 87 

standard clonotype definitions of 100% or 80% VH CDRH3 a.a. identity 2,4, only zero or five of the 12 variants, 88 

respectively, would have been identified as convergent across repertoires (Fig. 3d). In contrast, the VAE 89 

model was able to discover variants of RSV3 with as low as 64% CDRH3 a.a. identity (4 out of 11 90 

mismatches), verifying the large potential diversity revealed by the previous logo plots (Fig. 2d, Fig. 3f). 91 

Besides their sequence diversity, these clones also confirmed the large abundance range with confirmed 92 

binders being of high, medium and low frequencies in their respective mouse repertoires (Fig. 3e). 93 

 94 

Finally, we aimed to understand how well the VAE model is able to generalise to unseen data. To start, we 95 

experimentally produced an antibody CDRH3 library of the RSV3 clone through CRISPR-Cas9 homology-96 

directed mutagenesis17; while the diversity of the library was designed to model decoder-generated 97 

sequences of the RSV3 cluster, it also contained fully randomized positions (Supplementary Fig. 7a). 98 

Screening of the hybridoma antibody library by FACS followed by deep sequencing yielded 19’270 surface-99 

expressed variants of whom 7’470 were confirmed to be antigen-binding (Supp. Fig. 7b). When assessing 100 

the probabilities of these novel variants under the VAE model, we found that binding CDRH3s were 101 

significantly more likely to be generated than non-binding variants (Extended Data Fig. 10). However, since 102 

the library also contained a.a. that were not observed in nature, most of its variants were less likely to be 103 

generated by our model than naturally occurring sequences (Extended Data Fig. 10, Supplementary. Figure 104 

8). Yet, the overlap between the distributions indicated that the VAE model should have been able to generate 105 

some of these variants in silico. We confirmed this fact by sampling one million latent encodings directly from 106 

the respective RSV3 containing cluster of the GMM model. The trained decoder was then used to transform 107 

the sampled encodings into distinct position probability matrices from which in turn actual sequences were 108 

generated (Fig. 4a). This procedure exhaustively sampled the CDRH3 sequence space of RSV3 and yielded 109 

5’005 novel, high quality in silico variants that did not occur in the original biological training set. Of these 110 

variants, 71 were confirmed by the previous library screen to bind RSV-F, while 25 in silico variants were 111 

found in the non-binding fraction; resulting in an overall binding accuracy of 74%. Again, the non-binding 112 

variants were sampled at a much lower rate than binding variants, indicating that the bulk of the in silico 113 

generated sequences are likely to be antigen-specific as well (Fig. 4b, Extended Data Table 2).   114 
 115 

DISCUSSION 116 

In summary, we show that wide-scale convergence across a range of antigens occurs in the antibody 117 

repertoires of mice. Unlike current approaches used to identify clonotypes18-20, our VAE approach learns the 118 

clustering thresholds based on densities of individual sequence motifs found in the data, thereby forming 119 
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clusters of varying degrees of similarity.  Furthermore, our trained encoding neural network is able to identify 120 

these motifs in unseen repertoires in a sensible manner, thereby extending currently existing frameworks for 121 

immunodiagnostics21,22. Commonly applied methods to detect convergence such as clonotyping based on 122 

exact V-gene and J-gene and a CDRH3 similarity threshold (e.g. 80%) are only partly able to recover 123 

convergent patterns; in contrast deep learning revealed that convergent antibody sequences utilized various 124 

V-genes and J-genes and have dissimilarities of up to >40% in CDRH3. It is therefore likely that the current 125 

extent of antigen driven convergence in immune receptor repertoires has been underreported. We are able 126 

to discover convergent motifs from sequences buried deep in the repertoire, highlighting again the possibility 127 

that as the amount of available sequencing data increases, similar phenomena might be more commonly 128 

observed in humans as well. While we focused specifically on the VH region (previous studies have shown 129 

them to be sufficient to determine most clonal relationships23), we also observed evidence for potential 130 

convergence on the VL region; future work using single-cell sequencing24 may reveal convergent patterns 131 

across the paired VH:VL binding domain.  We show that our deep generative model allows us to exhaustively 132 

sample from the naturally occurring sequence space of antibody repertoires, resulting in the in silico 133 

generation of antibody variants that retain antigen-binding, a procedure that could be used for engineering 134 

antibodies with desired therapeutic development properties25. Detection of convergent patterns by deep 135 

learning may also enable the discovery of functional and protective antibodies in patients with unique 136 

immunological phenotypes (e.g., elite neutralizers of HIV), which could be exploited as immunodiagnostics, 137 

therapeutic antibodies or for vaccine immunogen design21,26-28 .   138 

 139 

METHODS 140 

Mouse immunizations and RNA isolation from bone marrow 141 

Female BALB/c mice (Charles Rivers) of 6-8 weeks old were separated into cohorts (10-12 mice) based on 142 

antigen: hen egg lysozyme (HEL, Sigma Aldrich, 62971-F), ovalbumin (OVA, Hyglos, 321001), blue carrier 143 

protein (BCP, Pierce, 771300) and respiratory syncytial virus fusion glycoprotein (RSV-F, expressed 144 

internally). For HEL, OVA and BCP, mice were immunized with an initial subcutaneous injection of 200 μg 145 

antigen (and 20 μg monophosphoryl lipid A (MPLA, Invivogen, Tlrl-mpla) adjuvant. These mice received zero, 146 

one, two or three booster injections for which final immunizations (boost 1, 2 or 3) were done with 50 μg 147 

antigen (intraperitoneal injection without any adjuvants). Middle immunizations (boost 1 and/or 2) were done 148 

with 50 μg antigen and 20 μg MPLA. For RSV-F, all mice were immunized with 2 booster injections, with each 149 

of the three injections consisting of 10 µg for RSV-F and 1% Alum (Thermo Scientific, 77161) adjuvant. For 150 

all antigens, sequential injections were interspaced by three weeks. All adjuvants and antigens were prepared 151 

and aliquoted before the experiments and mixed in a total volume of 150 μL (for RSV-F: 100µl)) on the days 152 

of the corresponding injection. Mice were sacrificed 10 days (for RSV-F: 14 days) after their final immunization 153 

and bone marrow was extracted from femurs of hind legs using 2 mM PBS buffer. The isolated bone marrow 154 

was then centrifuged at 400 x g at 4 °C for 5 minutes. The supernatant was removed and 1.25 mL of Trizol 155 

(Invitrogen, 15596026) was added. The bone marrow was then homogenized using a 18G*2’’ needle (1.2*50 156 

mm). 1 mL of the resulting Trizol solution was then frozen at -80 °C until processing. Mouse cohorts and 157 

immunization groups are described in Supplementary Table 1. RNA extraction was performed as previously 158 

described12. Briefly, 1 mL of the homogenate was used as input for the PureLink RNA Mini Kit (Life 159 



Friedensohn et al., Convergent selection by deep learning 

 6 

Technologies, 12183018A). RNA extraction was then conducted according to the manufacturer’s guidelines. 160 

 161 

Antibody repertoire library preparation and deep sequencing  162 

Antibody variable heavy chain (VH) libraries for deep sequencing were prepared using a previously established 163 

protocol of molecular amplification fingerprinting (MAF), which enables comprehensive error and bias 164 

correction12. Briefly, a first step of reverse transcription was performed on total RNA using a gene-specific 165 

primer corresponding to constant heavy region 1 (CH1) of IgG subtypes and with an overhang region 166 

containing a reverse unique molecular identifier (RID). Next, multiplex-PCR is performed on first-strand cDNA 167 

using a forward primer set that anneals to framework 1 (FR1) regions of VH and has an overhang region of 168 

forward unique molecular identifier (FID) and partial Illumina adapter; reverse primer also contains a partial 169 

Illumina sequencing adapter. A final singleplex-PCR step is performed to complete the addition of full Illumina 170 

adapters. After library preparation, overall library quality and concentration was determined on a Fragment 171 

Analyzer (Agilent). Libraries were then pooled and sequenced on an Illumina MiSeq using the reagent v3 kit 172 

(2x300 bp) with 10% PhiX DNA added for quality purposes. 173 

 174 

Data pre-processing and sequence alignment 175 

Before alignment, the raw FASTQ files were processed by a custom CLC Genomics Workbench 10 script. 176 

Firstly, low quality nucleotides were removed using the quality trimming option with a quality limit of 0.05. 177 

Afterwards, forward and reverse read pairs were merged and resulting amplicons between 350 and 600 base 178 

pairs were kept for further analysis. Pre-processed sequences were then error-corrected and aligned using 179 

the previously established MAF bioinformatic pipeline 12. Downstream analysis was then carried out using 180 

Python utilizing both the Tensorflow and scikit-learn libraries. 181 

 182 

Variational autoencoder models of antibody repertoires 183 

Following error and bias correction and alignment of antibody repertoire sequencing data, all discovered 184 

combinations of CDRH1, CDRH2 and CDRH3 for each dataset were extracted. In order to process CDRHs 185 

of various lengths, sequences were padded with dashes until a certain fixed length (maximum length for each 186 

CDRH in the data) was reached. Padded sequences were one-hot encoded, concatenated and used as input 187 

into the variational autoencoder (VAE). The VAE model jointly optimizes the ability to reconstruct its input 188 

together with a Gaussian mixture model (GMM)-based clustering of the latent space (Fig. 1) according to the 189 

following formula:  190 

ℒ"#$%(𝑥) = 	𝔼,-𝑦, 𝑧1𝑥2[ln(𝑥, 𝑦, 𝑧) − ln 𝑞(𝑦, 𝑧|𝑥)] 191 

With: 192 

𝑝(𝑥, 𝑧, 𝑦) = 	𝑝(𝑐)𝑝(𝑧|𝑦)𝑝(𝑥|𝑧) 193 

𝑝(𝑦)	~	Cat(𝜋) 194 

𝑝(𝑧|𝑦)	~	𝒩-𝜇@, 𝜎@B	𝕀D2 195 

 196 

And the following variational approximation of the posterior, where 𝑞(𝑧|𝑥, 𝑦) is assumed to be distributed 197 

according to a gaussian distribution: 198 

 199 
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𝑞(𝑦, 𝑧|𝑥) = 𝑞(𝑦|𝑥)𝑞(𝑧|𝑥, 𝑦) 200 

 201 

Unlike comparable models29, we do not make a mean field approximation when modelling the posterior, 202 

which we found to increase model stability. This choice however comes at the expense of considerable 203 

increases in computation time, as has been reported before30.  Specifically, we encode and decode every 204 

input sequence as if it would belong to every cluster (indicated through a one-hot encoded cluster label) using 205 

shared weights in every layer. The final contributions to the overall loss are then weighted by the separately 206 

predicted probabilities 𝑞(𝑦|𝑥), which describe the probability of a sequence belonging to a specific cluster 207 

(Extended Data Fig. 1). The decoder maps input sequences and concatenated class label into a lower 208 

dimensional (d=10) space using two dense layer with rectified linear unit (ReLU) activation followed by the 209 

final 10-dimensional layer. Sequences are sampled and recreated from the latent space using the decoder. 210 

The decoding network (Extended Data Fig. 1) employs two separate dense layers with ReLU activation 211 

followed by a dense layer with a linear activation, whose output is reshaped and normalized with a softmax 212 

activation in order to reconstruct the probabilities of the initial, one-hot encoded CDRHs. The standard 213 

categorical cross-entropy loss is used as the reconstruction term. Every VAE model was trained on a single 214 

GPU node of the ETH Zurich parallel computing cluster (Leonhard).  Training consisted of 200 epochs for all 215 

models using Adam as the optimization algorithm31.  216 

 217 

Predicting antigen exposure of single antibody repertoires  218 

Repertoire datasets were split into five folds with each fold being approximately balanced in the number of 219 

distinct antigen groups and each dataset appearing only once across all folds. This split was then used to 220 

perform a cross-validation procedure in which each of the five folds were set aside as a test set once and the 221 

remaining four folds were used as training data. For each of the five training/test splits a separate VAE model 222 

was learned by combining all sequences across all repertoires from the training set as input. Clustering 223 

assignments or sequences from both the training and the test set were then calculated for the trained model. 224 

Based on these cluster labels each repertoire was recoded as an n-dimensional vector, where n is the number 225 

of possible clusters and the i-th element indicates the number of sequences mapping to the i-th cluster in the 226 

given repertoire. These vectors were then used to train and validate linear support vector machines (SVM) in 227 

a one-versus-all setting. In order to prevent a more resource-intensive nested cross-validation procedure we 228 

decided to not optimize the hyperparameters of the SVMs and instead chose to use the standard values 229 

given by scikit-learn’s ‘SVC’ implementation (using a linear kernel). For visualization purposes the results of 230 

each cross-validation step were grouped together in one single confusion-matrix (Fig. 2b).  231 

 232 

Identification of convergent antigen-associated sequence clusters 233 

In order to identify convergent antigen-associated sequence clusters from antibody repertoires, we 234 

performed a non-parametric permutation test in order to determine whether sequence reads were specifically 235 

enriched in one cluster given a specific cohort (Fig. 2c). In order to account for multiple testing, Bonferroni 236 

correction was applied to all p-values in each cohort. We proceeded by randomly choosing one CDRH1-237 

CDRH2-CDRH3 combination and its cognate full-length variable region from each cluster for further 238 

validation. Permutation tests were carried out in Python using mlxtend and 1000 permutations each. 239 
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Generation of cluster-specific, in-silico variants 240 

Cluster-specific, novel variants were generated in-silico by sampling data points in latent space from a 241 

multivariate gaussian distribution, where parameters were given by the respective cluster parameters from 242 

the final VAE model. These sampled data points were then fed into the decoding network resulting in position 243 

probability matrices for each CDRH (Fig. 4a). For each data point a given CDRH1, CDRH2 and CDRH3 was 244 

generated. This process was repeated for a million iterations. The log probability of single sequences was 245 

approximated by taking the average of 500 samples of the evidence lower bound (ELBO). 246 

 247 

Hybridoma cell culture conditions 248 

All hybridoma cell lines and libraries were cultivated in high-glucose Dulbecco’s Modified Eagle Medium 249 

(DMEM; Thermo, 61965026) supplemented with 10% (v/v) heat inactivated fetal bovine serum (FBS; Thermo, 250 

26140079), 100 U/ml penicillin/streptomycin (Pen Strep; Thermo, 15140122), 10 mM HEPES buffer (Thermo, 251 

15630080) and 50 µM 2-Mercaptoethanol (Thermo, 21985023). All hybridoma cultures were maintained in 252 

cell culture incubators at a constant temperature of 37C in humidified air with 5% CO2. Hybridoma cells were 253 

typically cultured in 10 ml of medium in T-25 flasks (TPP, 90026) and passaged every 48/72h. All hybridoma 254 

cell lines were confirmed annually to be Mycoplasma-free (Universal Mycoplasma Detection Kit, ATCC, 30-255 

1012K). The hybridoma cell line PnP-mRuby/Cas9 was previously published17. 256 

 257 

Generation of antibody libraries by CRISPR-Cas9 homology-directed repair 258 

Candidate VH genes were ordered from Twist Bioscience as gene fragments, which were resuspended in 25 259 

μl Tris-EDTA, pH 7.4 (Sigma) prior to use. All oligonucleotides as well as crRNAs and tracrRNA used in this 260 

study were purchased from Integrated DNA Technologies (IDT) and adjusted to 100 ìM (oligonucleotides) 261 

with Tris-EDTA or to 200 ìM (crRNA/tracrRNAs) with nuclease-free duplex buffer (IDT, 11-01-03-01) prior to 262 

use. The homology-directed repair (HDR) donor template used throughout this study was based on the 263 

pUC57(Kan)-HEL23-HDR homology donor plasmid, previously described 16,32. Importantly, two consecutive 264 

stop codons were incorporated into the beginning of the coding regions for the VH and the variable light chain 265 

(VL) sequences in order to avoid library cloning artefacts and background antibody expression due to 266 

unmodified parental vector DNA.  267 

 268 

For each candidate VH, separate HDR-donor VL libraries were assembled in a stepwise manner by Gibson 269 

cloning using the Gibson Assembly Master Mix (NEB, E2611)33. When necessary, fragments were amplified 270 

using the KAPA Hifi HotStart Ready Mix (KAPA Biosystems, K2602) following manufacturer instructions. First, 271 

VH genes were amplified from gene fragments and cloned into the PCR-linearized parental HDR-donor vector 272 

(step 1, Extended Data Figure 8). Next, with total bone-marrow RNA of a mouse that was immunized with 273 

one of the four respective antigens, reverse transcription was performed using the Maxima Reverse 274 

Transcriptase (Thermo, EP0741) with a primer specific for VL constant region. The resulting cDNA was used 275 

to amplify the respective VL repertoires in PCR reactions using a degenerate multiplex primer mix, previously 276 

described34 (Supplementary Table 6). VL repertoires were cloned into the PCR-linearized HDR-donor vector 277 

created in step 1 for each candidate VH library (step 2) and final libraries were assessed in terms of diversity 278 
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and background clones. Typically, fixed VH HDR-donor VL libraries had sizes ranging from 30’000 – 80’000 279 

transformants per library. 280 

 281 

PnP-mRuby/Cas9 cells were electroporated with the 4D-Nucleofector System (Lonza) using the SF Cell Line 282 

4D-Nucleofector Kit L (Lonza, V4XC-2012) with the program CQ-104. For each HDR-donor library, 106 cells 283 

were harvested by centrifugation at 125 x g for 10 min, washed with 1 ml of Opti-MEM Reduced Serum 284 

Medium (Thermo, 31985-062) and centrifuged again using the same parameters. The cells were finally 285 

resuspended in 100 ìl of nucleofection mix containing 500 pmol of crRNA-J/tracrRNA complex and 20 ìg of 286 

HDR-donor plasmid (5.9 kb) diluted in SF buffer. Following electroporation, cells were cultured in 1mL of 287 

growth media in 24-well plates (Thermo) for two days and moved to 6-well plates (Costar) containing another 288 

2 mL of growth media for one additional day. 289 

 290 

Screening of hybridoma antibody libraries by flow cytometry 291 

Flow-cytometry analysis and FACS of CRISPR-Cas9 modified hybridomas was performed on a BD LSR 292 

Fortessa and BD FACS Aria III (BD Biosciences). Flow cytometry data was analyzed using FlowJo V10 (FlowJo 293 

LLC). Three days post-transfection, hybridoma cell libraries specific for one antigen were pooled and enriched 294 

for antibody-expressing and antigen-specific cells in consecutive rounds of FACS. Typically, the number of 295 

sorted cells from the previous enrichment-step was over-sampled by a factor of 40 in terms of the number of 296 

labelled cells for the subsequent sorting-step. For labelling, cells were washed with PBS (Thermo, 10010023), 297 

incubated with the labelling antibodies or antigen for 30 min on ice protected from light, washed two times 298 

with PBS and analyzed or sorted. The labelling reagents and working concentrations are listed in 299 

Supplementary Table 7. For cell numbers different from 106, the amount of antibody/antigen as well as the 300 

incubation volume were adjusted proportionally. For labelling of RSV-F-specific cells, a two-step labelling 301 

procedure was necessary due to the indirect labelling of cells with RSV-F-biotin/Streptavidin-AlexaFluor647. 302 

 303 

Genotyping of monoclonal hybridoma cell lines 304 

Genomic DNA of single-cell sorted and expanded hybridoma clones was isolated from 5x105 cells, which 305 

were washed with PBS and resuspended in QuickExtract DNA Extraction Solution (Epicentre, QE09050). 306 

Cells were incubated at 68 °C for 15 min and 95 °C for 8 min and the integrated synthetic VL-Ck-2A-VH 307 

antibody region was PCR-amplified with flanking primers 5’-CATGTGCCTTTTCAGTGCTTTCTC-3’ and 5’-308 

CTAGATGCCTTTCTCCCTTGACTC-3’ that were specific for the 5’ and 3’ homology arms. From this single 309 

amplicon, both VH and VL regions could be Sanger-sequenced using primers 5’-TGACCTTCTCAAGTTGGC-310 

3’ and 5’-GAAAACAACATATGACTCCTGTCTTC-3’, respectively (Microsynth).  311 

 312 

Measurement of antibody specificity by ELISA (cell culture supernatant) 313 

Standard sandwich enzyme-linked immunoabsorbance assays (ELISAs) were performed to measure the 314 

specificity of hybridoma cell line supernatants containing secreted IgG. High binding 96-well plates (Costar, 315 

CLS3590) were coated over night with 4 ug/ml of antigen in PBS at 4C. The plates were then blocked for two 316 

hours at room temperature with PBS containing 2 % (m/v) non-fat dried milk powder (AppliChem, A0830) and 317 

0.05 % (v/v) Tween-20 (AppliChem, A1389). After blocking, plates were washed three times with PBS 318 
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containing 0.05 % (v/v) Tween-20 (PBST). Cell culture supernatants were 0.2 µm sterile-filtrated (Sartorius, 319 

16534) and serially diluted across the plate (1:3 steps) in PBS supplemented with 2 % (m/v) milk (PBSM), 320 

starting with non-diluted supernatants as the highest concentrations. Plates were incubated for one hour at 321 

room temperature and washed three times with PBST. HRP-conjugated rat monoclonal [187.1] anti-mouse 322 

kappa light chain antibody (abcam ab99617) was used as secondary detection antibody, concentrated at 0.7 323 

µg/ml (1:1500 dilution from stock) in PBSM. Plates were incubated at room temperature for one hour again, 324 

followed by three washing steps with PBST. ELISA detection was performed using the 1-Step Ultra TMB-325 

ELISA Substrate Solution (Thermo, 34028) and reaction was terminated with 1 M H2SO4. Absorption at 450 326 

nm was measured with the Infinite 200 PRO NanoQuant (Tecan) and data were analyzed using Prism V8 327 

(Graphpad). 328 

 329 

Measurement of antibody serum titers by ELISA 330 

Serum titers were measured in a similar manner as described above with the following exceptions: (1) Plates 331 

were coated with either 10μg/mL (OVA, BCP, HEL) or 2μg/mL of antigen (RSV-F) dissolved in PBS. (2) OVA, 332 

BCP and HEL serum ELISAs were blocked with 300μL/well of PBS with 3% BSA, 3%FBS, 0.05% Tween and 333 

0.05% Proclin and were incubated overnight at 4 °C.  334 

 335 

RSV3 CDRH3 library generation 336 

RSV3 CDRH3 libraries were generated following CRISPR-Cas9 homology-directed mutagenesis, as 337 

previously described 17. Briefly, a single-stranded oligonucleotide (ssODN) encoding a nucleotide sequence 338 

that put the endogenous CDRH3 out of frame and contained a highly efficient CRISPR targeting sequence 339 

was incorporated into the genomic CDRH3 locus of the RSV3 cell line by CRISPR/Cas9-mediated HDR, using 340 

reagents crRNA DN_RSV3_H3-3 and 500 pmol of DN_RSV3-OOF ssODN HDR-template (RSV3-OOF cell line, 341 

Supplementary Fig. 7a, Supplementary Table 7). Next, 4 x 106 RSV3-OOF cells were transfected with 342 

crRNA-DM1 and 500pmol of ssODN encoding a CDRH3 library template per 1 x 106 cells to generate the 343 

RSV3 CDRH3 in silico library. Transfected cells were subsequently sorted in two consecutive steps for 344 

antibody expression and specificity/negativity towards RSV-F (as described above) to enrich for a pure RSV-345 

F-specific cell population and an RSV-F-negative cell population.  346 

 347 

Deep sequencing of RSV3 CDRH3 libraries 348 

Sample preparation for deep sequencing was performed following a previously established two-step primer 349 

extension protocol [23]. Genomic DNA was extracted from 5 x 106 cells of IgG+, IgG+/RSVF+ and IgG+/RSVF- 350 

enriched cell populations using the PureLinkTM Genomic DNA Mini Kit (Thermo, K182001). Extracted genomic 351 

DNA was amplified in a first PCR using a forward primer binding to the beginning of FR3 and a reverse primer 352 

binding to the intronic region located ~40 bp downstream of the end of the J-gene.  353 

PCRs were performed with Q5 High-Fidelity DNA polymerase (NEB, M0491L) in 8 parallel 50ul reactions with 354 

the following cycle conditions: 98 °C for 30 s; 20 cycles of 98 °C for 10 s, 64 °C for 20 s, 72 °C for 20 s; final 355 

extension 72 °C for 2 min; 4 °C storage. PCR products were subsequently concentrated using the DNA Clean 356 

and Concentrator Kit (Zymo, D4013) followed by 1.2X SPRIselect (Beckman Coulter, B22318) left-sided size 357 

selection. Total PCR1 product (~700 ng) was amplified in a second PCR step, which added extension-specific 358 
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full-length Illumina adapter sequences to each library by choosing 3 different index reverse primers (DM142-359 

144, using DM125 as the forward primer). Cycle conditions were as follows: 98 °C for 30 s; 2 cycles of 98 °C 360 

for 10 s, 40 °C for 20 s, 72 °C for 1 min; 15 cycles of 98 °C for 10 s, 65 °C for 20 s, 72 °C for 30 s; final 361 

extension 72 °C for 2 min; 4 °C storage. PCR2 products were subsequently concentrated again using the 362 

DNA Clean and Concentrator Kit and run on a 1% agarose gel. Product bands of the correct size (~400 bp) 363 

were gel-purified using the ZymocleanTM Gel DNA Recovery Kit (Zymo, D4008) and subsequently analyzed 364 

by capillary electrophoresis (Fragment analyzer, Agilent). After quantitation, libraries were pooled accordingly 365 

and sequenced on a MiSeq System (Illumina) with the paired-end 2x300bp kit. 366 
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FIGURES 
 

 
Figure 1. Schematic overview of deep learning on antibody repertoires of immunized mice. 
Antibody repertoires from the bone marrow of mice immunized with various antigens are deep sequenced. 
Antibody sequences are then used to train a variational autoencoder (VAE) with a Gaussian mixture model 
(GMM) clustering of the latent space. The VAE model is able to both generate novel sequences and assign 
input sequences to distinct clusters based on their latent space embedding. Cluster assignments are used 
to identify convergent sequences that are heavily enriched in a specific repertoire or antigen cohort. Natural 
and in-silico generated sequences from antigen-associated clusters are expressed as full-length IgG and 
verified as binding antibodies. 



Friedensohn et al., Convergent selection by deep learning 

 15 

 
Figure 2. Identification and characterization of convergent antigen-associated sequences. 
a, Ten-dimensional latent space of two antibody repertoires visualized by principal component analysis (PCA). 
Blue and red dots indicate sequences belonging to one OVA (2C) and RSV-F (2C) repertoire, respectively. 
Enlarged area highlights two learned clusters only containing sequences specific to one repertoire and their 
respective sequence motifs. b, Antibody repertoires are transformed into vectors based on the learned 
sequence clusters in latent space. Recoded vectors are used as input for a linear support vector machine 
(SVM) classifier of antigen exposure. Confusion matrices show the aggregated prediction results of each 
model during 5-fold cross-validation using the cluster labels and raw sequences as features. c, Heatmap 
contains all predictive and convergent sequence clusters for each cohort. Dashed red line indicates mice that 
only received the primary immunization. d, Example sequence logos of convergent clusters found in each 
antigen cohort. 
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Figure 3. Convergent clusters contain antigen-specific antibodies.   
a, Dose-dependent absorbance curves of supernatant prepared from hybridoma cells expressing antibodies 
with convergent variable heavy (VH) chain pools for each antigen. b, Flow cytometry histograms of six 
monoclonal cell populations each utilizing a different convergent OVA-associated or RSV-F associated VH. 
Grey histograms represent negative controls, colored histograms show the convergent antibodies. c, Flow 
cytometry histograms of 12 monoclonal cell populations of convergent variants (CV), which use a different VH 
sequence from the same cluster as RSV3. d, Table shows the CDRH3s of the selected CVs and the RSV-F 
immunized mouse repertoire in which they were found. Red letters indicate differences to the initially 
discovered sequence RSV3 sequence. e, Scatterplot shows the frequency-rank distributions per mouse 
repertoire of CVs from RSV3 cluster. Red dots highlight VH confirmed to be binding in c. e, Pie charts show 
the nine most utilized V-gene germlines in convergent clones for both RSV-F and OVA. 
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Figure 4. Deep generative modelling and in silico antibody sequence generation. 
a, Schematic deep generative modeling of antibody sequence space: a cluster is either chosen or randomly 
sampled and based on the parameters chosen, a random sample is drawn from a multivariate normal 
distribution. The encoder then translates the encoding into a multivariate multinomial distribution from which 
a novel sequence is sampled. b, Scatter plot shows the two latent naturally occurring variants, yellow dots 
show the ten most frequently in-silico sampled encodings that were confirmed to be binding antibodies. The 
table on the right shows their CDRH3 sequence and its count after 1’000’000 samples. Red letters indicate 
differences to the initial biological sequence (RSV3, shown in black). 
 

 


