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Abstract

Phylogenetic trees are a central tool in evolutionary biology. They demonstrate

evolutionary patterns among species, genes, and with modern sequencing technologies,

patterns of ancestry among sets of individuals. Phylogenetic trees usually consist of tree

shapes, branch lengths and partial labels. Comparing tree shapes is a main challenge in

comparing phylogenetic trees as there are few tools to describe tree shapes in a

quantitative, accurate, comprehensive and easy-to-interpret way. Current methods to

compare tree shapes are often based on scalar indices reflecting tree imbalance, and on

frequencies of small subtrees. Polynomials are important tools to describe discrete

structures and have been used to study various objects including graphs and knots. There

exist polynomials that describe rooted trees. In this paper, we present methods based on a

polynomial that fully characterizes trees. These methods include tree metrics and machine

learning tools. We use these methods to compare tree shapes randomly generated by

simulations and tree shapes reconstructed from data. Moreover, we also show that the

methods can be used to estimate parameters for tree shapes and select the best-fit model

that generates the tree shapes.
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A tree is a natural data structure that represents hierarchical relations between

objects. In phylogenetics, a tree structure usually includes its tree shape, that is, the

unlabeled underlying graph, as well as branch lengths reflecting either evolutionary

distance or time. Estimating the branch lengths can be a challenge for tree reconstruction

methods, with Bayesian and maximum likelihood methods yielding inconsistent results

(Brown, 2010), high demands on memory and processor time (Binet, 2016), and/or lack of

strong support for a molecular clock (in the case of timed trees). As a consequence, the

inferred phylogenetic trees may have a consistent tree shape but differing root heights. In

this paper, we mainly focus on tree shapes, which are of both evolutionary and

mathematical interests.

The shapes of phylogenetic trees can carry information about macroevolutionary

processes, as well as reflecting the data used and the choice of the evolutionary model

(Kirkpatrick, 1993; Purvis, 2011; Aldous, 1996). The ecological fitness and the presence of

selection can also affect the shapes of trees (Dayarian, 2014; Maia, 2004). In the study of

infectious diseases, where the shapes of phylogenetic trees of pathogens reveal diversity

patterns that represent a combination of unfixed neutral variation, variation under

selection, demographic processes and ecological interactions, it is not clear how informative

the tree shapes are of the underyling evolutionary and epidemiological processes. However,

effort is being made to explore this question, with the main focus often on the frequency of

cherries and tree imbalance (Grenfell, 2004; Lambert, 2013; Plazzotta, 2016; Volz, 2013).

One of the main topics of inquiry in phylogenetic tree shapes has been asymmetry,

since a key observation was made that the shapes of phylogenetic trees reconstructed from

data are more asymmetric than tree shapes simulated by simple models (Aldous, 1996).

Various ways to measure the asymmetry were developed (Aldous, 1996; Colless, 1982;

Fusco, 1995; Sackin, 1972; Stich, 2009) and it was shown that these asymmetric measures

can distinguish random trees generated by different models (Agapow, 2002; Kirkpatrick,

1993; Matsen, 2006). At the same time, mathematical models that produce imbalanced
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trees were developed (Aldous, 2001; Blum, 2006). As statistical tools, the distributions of

tree shapes under simple models can be used to test evolutionary hypotheses (Blum, 2006;

Mooers, 1997; Wu, 2016). In (Manceau, 2015), and mathematical models can be developed

to match the macroevolutionary patterns observed in the phylogenetic trees reconstructed

from data.

As the cost of DNA sequencing is decreasing, more genomic data are being collected

and becoming available. More organisms are being sequenced progressively at the

whole-genome scale (Bedford, 2015; Chewapreecha, 2014; Colijn, 2018) and the evolution

of certain pathogens is being tracked in real time (Hadfield, 2018). As a consequence, both

the number and the size of trees reconstructed from data are increasing. Accordingly, a

major challenge in tree shape analysis is that there are few tools to describe and compare

trees in a quantitative, accurate, comprehensive and easy-to-interpret way, especially for

large trees. Scalar indices describing asymmetry or the frequency of subtrees have a

limitation in that many different tree shapes may have the same index. A labelled tree is a

tree shape whose vertices have unique labels. An alternative approach to comparing tree

shapes is using metrics defined for labelled trees, for example, the well known

Robinson-Foulds metric (Robinson, 1981), Billera-Holmes-Vogtmann metric (Billera, 2001)

and Kendall-Colijn metric (Kendall, 2016), among others. These metrics depend on the

labels of the vertices, that is, two labelled trees with the same tree shape but the labels

re-arranged are not identical and the distances between them can be very large. Recently,

metrics defined for rooted unlabelled trees or rooted tree shapes have also been introduced

(Colijn, 2018), making use of integer labels assigned to tree shapes. However, these metrics

have several limitations, including the challenge of interpreting the integer labels, the

treatment of non-binary trees, and the metrics’ performance in distinguishing trees from

different processes or datasets.

Polynomials are important tools in the mathematics study of discrete structures,

and can be used to describe discrete structures in interpretable ways. For example, the
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Tutte polynomial (Tutte, 1954) is a renowned polynomial for graphs and the Jones

polynomial (Jones, 1985) is one of the most important tools to study knots. In (Liu, 2019),

a method to assign a unique polynomial to each tree shape is introduced. These

polynomials provide a new way to describe tree shapes quantitatively and comprehensively.

The coefficients of the polynomial of a tree can be considered as a generalization of the

clade size distribution of the tree. In addition, the set of coefficients of a tree polynomial

can be treated as a vector, and vectors are natural objects on which to define metrics.

Here, we define and examine a metric and a binary similarity measure on rooted tree

shapes. We show that the polynomial metric and the binary similarity measure can

separate trees that are known to have different shapes. We also show that the coefficients

of the polynomials of trees can be used to estimate parameters of model to match a fixed

tree, and can identify the model that generates a tree most similar to a fixed tree.

Materials and Methods

Tree Polynomials, Distances and Binary Differences

A tree or a tree shape represents an unlabeled tree, that is a graph with no cycles,

without information about branch lengths or tip labels unless otherwise stated. We define

a polynomial P (T ) for each rooted unlabeled tree T in the following way. If T is the trivial

tree with a single vertex, then P (T ) = x. Otherwise T has k branches at its root and each

branch leads to a subtree of T . So T has k rooted unlabeled subtrees T1, T2, ... , Tk whose

roots are internal nodes of T and are adjacent to the root of T . We define the polynomial

for T by P (T ) = y +
∏k

i=1 P (Ti). If all the subtrees are the trivial tree, then we have

defined the polynomial. If Ti is not trivial, then we apply the same definition to compute

P (Ti). We apply the definition recursively until we reach all tips of T . It is proved in (Liu,

2019) that the polynomial distinguishes unlabeled rooted trees and can be generalized to

distinguish unlabeled unrooted trees. A rooted tree can be reconstructed from its
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polynomial by computing its Newick code, which can be obtained by recursively

subtracting y and factoring the rest of the polynomial. Methods to factor large

multivariate polynomials can be found in (Monagan, 2018).

The coefficients of a tree polynomial can be written as a matrix or vector of

integers. Let T be a rooted tree with n tips. Its coefficient matrix C(T ) or (c(α,β)) is

displayed as follows, where c(α,β) is the coefficient in the term c(α,β)xαyβ.

C(T ) =



1 x x2 . . . xn

1 c(0,0) c(1,0) c(2,0) . . . c(n,0)

y c(0,1) c(1,1) c(2,1) . . . c(n,1)

y2 c(0,2) c(1,2) c(2,2) . . . c(n,2)

...
...

...
...

. . .
...

yn c(0,n) c(1,n) c(2,n) . . . c(n,n)


= (c(α,β))

These coefficients are interpretable. The coefficient c(α,β) in C(T ) indicates the number of

ways to choose β clades that together contain n− α tips in total, in a tree with n tips. In

particular, the second row in the matrix C(T ) represents the clade size distribution such

that c(n−k,1) indicates the number of clades with k tips (Liu, 2019). We define the

polynomial metric by comparing the corresponding coefficients in the polynomials P (T1)

and P (T2), where T1 and T2 are two arbitrary trees. Let C(T1) = (c
(α,β)
1 ) and

C(T2) = (c
(α,β)
2 ) be the coefficient matrices of T1 and T2; we define the metric as follows.

d(T1, T2) =
∑

06i,j6n

log
( ∣∣∣c(i,j)1 − c(i,j)2

∣∣∣+ 1
)

This is a metric since non-negativity, identity, symmetry are trivial to check and the

subadditivity follows the triangular inequality of the absolute value and the monotonicity

and the concavity of the logarithm function. If T1 and T2 are of different sizes, for example

say T1 has n tips and T2 has m tips where m < n, then we align the coefficient matrices so

that the corresponding clade sizes are compared, that is, we align c
(m,0)
2 with c

(n,0)
1 and

make C(T2) an n× n matrix by filling the remaining entries with zeros.

Counting the number of terms that are present in P (T1) but are absent in P (T2), or
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the number of terms that are present in P (T2) but are absent in P (T1), provides another

way to compare polynomials P (T1) and P (T2) for arbitrary trees T1 and T2. These are not

strictly metrics, because two trees could be different but have the same presence-absence

pattern in their coefficients. However, binary similarities are commonly used in various

sciences for classification and clustering (Choi, 2010).

Figure 1. The polynomial for tree A is P (A) = x7 + 2x5y + x4y + x3y2 + x3y + x2y2 + x2y + xy2 + y2 + y. The
polynomial for tree B is P (B) = x7 + 3x5y + x4y + 3x3y2 + x3y + 2x2y2 + xy3 + xy2 + y3 + y2 + y. The polynomial

distance between the trees is d(A,B) =
∑

06i,j67 log(|c(i,j)1 − c
(i,j)
2 |+ 1) = 5 log(1 + 1) + log(2 + 1) = 4.5643. The

term that are present in P (A) but are absent in P (B) is x2y and the terms that are absent in P (A) but are present
in P (B) are xy3 and y3. So the the polynomial binary differences are 1 and 2 respectively.

Simulations

The random tree shapes compared in this paper are generated using the R package

apTreeshape. Four different models are used to generate the random trees. The Yule model

or the Markov model is a non-parametric model such that each extant lineage has the

same probability to branch into two new lineages. The proportional to distinguishable

arrangements or the PDA model generates trees by uniformly randomly choosing a tree

from the set of all tip-distinguished trees with a fixed number of tips. As there are more

tip-distinguished trees that are based on imbalanced tree shapes, the PDA model is more

likely to generate imbalanced trees. The Aldous model or Aldous’ branching model is

defined with a specific symmetric split distribution using harmonic numbers (Aldous, 1996;

Blum, 2006). The biased speciation model is a parametric model with a probability
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parameter p such when a lineage with branching rate r splits, one of the descendant

lineages has a speciation rate of pr and the other has a speciation rate of (1− p)r. Because

this is a simple one-parameter model, and because it generates imbalanced trees, we use

this model to demonstrate parameter estimation.

To simplify the statements, a Yule (PDA, Aldous or biased) tree stands for a

random tree generated by the Yule (PDA, Aldous or biased) model in the rest of the paper.

Parameter and Model Estimation

Parameter estimation We use two methods to estimate the parameter p of the

biased speciation model. One of the methods is based on the polynomial metric and the

k-nearest neighbor algorithm (with k = 3). To estimate the parameter p for a given tree

T ∗, we generate 1,000 biased trees of the same size as T ∗ with the parameter p uniformly

randomly chosen from the interval (0, 0.5]. Then we compute the polynomial distances

between T ∗ and the set of biased trees. Let T1, T2, T3 be the 3 nearest trees to T ∗,

d1 = d(T ∗, T1), d2 = d(T ∗, T2), d3 = d(T ∗, T3) and let p1, p2, p3 be the parameters that were

used to generate T1, T2, T3 respectively. We estimate p∗, the parameter for T ∗, with the

following formula:

p∗ =
(1/d1)p1 + (1/d2)p2 + (1/d3)p3

1/d1 + 1/d2 + 1/d3

In the case where some di = 0, p∗ = (
∑

di=0 pi)/(
∑

di=0 1).

The Sackin index is a scalar that measures the imbalance of a tree. Let s(T ) be the

Sackin index and λ(T ) be the number of cherries of an arbitrary tree T . The imbalance

and the number of cherries are two of the main statistics that have been used previously to

capture tree shapes and to fit evolutionary and epidemiological models (Frost, 2013). We

associate a vector, the Sackin-cherry vector, v(T ) = (s(T ), λ(T )) with the tree T . To

determine whether polynomial-based tree comparisons offer improved estimates compared

to these scalar tree statistics, we compute the Euclidean distances between these vectors

and use the same formula as above to estimate the parameter p (except that the distances
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di are replaced with the Euclidean distances between Sackin-cherry vectors).

The second method is based on linear regression. To estimate the parameter p of a

given tree T ∗, we generate 100,000 biased trees of the same size as T ∗ with the parameter p

uniformly randomly chosen from the interval (0, 0.5]. We consider the polynomial

coefficients of a tree as variables and use the polynomial coefficients of biased trees to fit a

linear model, where the parameter p of a tree is the scalar response. We apply the

predictor function to the polynomial P (T ∗) to estimate the parameter p∗ of T ∗. This

method is more computationally expensive than the first one as there exist (n+ 1)2

variables for a tree with n tips.

Similarly, we also use the Sackin-cherry vectors to fit a linear model, where we

model the predicted parameter p as a linear combination of the Sackin index and the

number of cherries of a tree. We use the predictor function and the Sackin-cherry vector

v(T ∗) to estimate p∗.

Model estimation We use classification to select the model that is the best fit for

generating a given tree. To reduce the number of variables, we substitute the variable y in

the polynomial with the complex number 1 + i. It is proved in (Liu, 2019) that if we

substitute any prime number for the variable y in the polynomial, the resulting polynomial

also distinguishes rooted binary trees. We use the phrase ”complex polynomial” for the

polynomial with i+ 1 in place of y. To estimate the model that is the best fit for

generating a fixed tree T ∗, We generate 200 random trees of the same size as T ∗ using the

Yule model, the PDA model, the Aldous model and the biased speciation model with a

chosen parameter p (for a total of 800 trees). We compute the complex polynomials of

these trees and use their coefficients to train a naive Bayes classifier. We then use this

classifier to estimate the model that generates T ∗.
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Data

HIV and influenza virus trees The HIV trees were described and analyzed

previously (Chindelevitch, 2019). Briefly, HIV-1 sequence data from three studies were

used. The Wolf et al. study (Wolf, 2017) provided data from a concentrated epidemic of

HIV-1 subtype B, occurring primarily in men who have sex with men (MSM) in Seattle,

USA. The Novitsky et al. study (Novitsky, 2013) describes data from a generalized

epidemic of HIV-1 subtype C in Mochudi, Botswana, a village in which the HIV-1

prevalence in the adult population at the time was estimated to be approximately 20%.

Hunt et al. (Hunt, 2013) describes data from a national survey of the generalized epidemic

of HIV-1 subtype C in South Africa. These datasets reflect a diverse set of spatial scales

and epidemiological contexts. Phylogenetic reconstruction was described in (Chindelevitch,

2019); briefly, trees were reconstructed using RAxML (Stamatakis, 2014), which is a

maximum likelihood method, under a general time-reversible (GTR) model of nucleotide

substitution. We use a GTRCAT model for rate variation among sites. Each tree was

based on a random sample of 100 sequences. We use a subtype D sequence as an outgroup

to root HIV-1 subtype B phylogenies.

Our influenza virus trees were previously described in (Colijn, 2018). We aligned

HA protein sequences from NCBI, focusing on human influenza A (H3N2). Data were

downloaded from NCBI on 22 Jan. 2016. We included full-length HA sequences with

collection date. The USA dataset (n = 2168) includes sequences from the USA with

collection dates between Mar. 2010 and Sep. 2015. The tropical dataset (n = 1388)

includes sequences with a location listed as tropical, with collection dates within Jan. 2000

and Oct. 2015. Accession numbers are included in the Supporting Information of Colijn

(2018). Fasta files were aligned with mafft, and for both the tropical and USA datasets,

500 taxa were selected uniformly at random 200 times. We inferred 200 corresponding

phylogenetic trees with FastTree (Price, 2010). Where necessary we re-aligned the 500

selected sequences before performing tree inference. This process resulted in 200 “tropical”
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influenza virus trees and 200 “USA” influenza virus trees, each with 500 tips,

reconstructed from the HA region of human H3N2 samples. Note that this approach is

distinct from the perhaps more familiar phylogenetic methods where bootstrapping or

Bayesian reconstructions results in many trees on one set of tips. These are likely to share

features and structures because they describe the ancestry of the same set of taxa. Here,

each tree has a different set of tips (though there is some overlap).

WHO influenza virus clades We used several influenza virus clades, described in

(Hayati, 2019). In that work we downloaded all human H3N2 full-length HA sequences

with dates between 1980 and May 2018 and created a large, timed phylogeny of H3N2

using RAxML and Least Squares Dating (Stamatakis, 2014; To, 2016). This “full” tree has

over 12,000 tips. We used the Nextflu (Neher, 2015) augur pipeline

(https://bedford.io/projects/nextflu/augur/) to assign a WHO clade designation to

the sequences. The WHO defines named clades using specific mutations in the HA1 and

HA2 subunits of the HA protein. The full list of mutations is available at: https:

//github.com/nextstrain/seasonal-flu/blob/master/config/clades_h3n2_ha.tsv.

We assign a sequence to a clade if it contains all the mutations defining that clade. We

then extracted the subtrees of the “full” tree corresponding to specific WHO clades

A1B/135N (60 tips), A1B/135K (63 tips), 3c3.B (117 tips) and A3 (227 tips). These are

recent and appropriately-sized trees which we use here to demonstrate parameter

estimation for simple models, and model selection among our four random tree models.

Implementation

We developed an R package named treenomial, which is available at CRAN. We

also prepared a demonstration named treeverse, which displays a 3-dimensional projection

of the polynomial metric space of all binary tree shapes up to 16 tips with interactive

options available at https://magpiegroup.shinyapps.io/treeverse/.
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Results

Polynomial Tree Comparison

Simulated random trees Random trees are generated using models that are known

to produce different tree shapes, that is, the Yule model, the PDA model, the Aldous

model and the biased speciation model with p = 0.3. See Methods. For each model, 100

random trees with 500 tips are generated. To determine how the polynomial tree

comparisons distinguish the models’ random trees, a visualization of the distances by

classical multidimensional scaling or MDS is shown in Figure 2 A. The separated clusters

suggest that the polynomial distance captures the distinctive tree shapes generated by

these four models. These clusters are tighter, more distinct, and less noisy than the

corresponding clusters for the same set of random trees generated by the four models using

the earlier integer labelling metric in (Colijn, 2018). The horseshoe shape in the MDS plot

suggests that there may be an underlying latent parameter for these random trees

(Diaconis, 2008). The Sackin index and the number of cherries are the most studied scalars

for tree shapes. To determine if they match the latent parameter, we compute the Sackin

indices and the numbers of cherries for the random trees. Our results suggest that neither

corresponds to the underlying latent parameter. See Supplementary Figure 2.

Data-derived trees We also compute the polynomial distances between trees

inferred from data. The first data set consists of trees inferred from sequences of the HA

gene in human influenza virus A H3N2. Influenza virus A is highly seasonal outside the

tropics and most cases occur in the winter (Russell, 2008), whereas there is relatively little

seasonal variation in the tropics. This demonstrative data set to provides trees for the same

virus circulating with different epidemiological dynamics (seasonal forcing in temperate

regions, vs lack of seasonality in the tropics). The second data set consists of three samples

of trees inferred from HIV-1 sequences in different settings: subtype B among MSM in

Seattle (Wolf, 2017), a generalised HIV subtype epidemic in at the village scale Botswana
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Figure 2. The MDS plots of the polynomial distances between (A) the random trees with 500 tips generated by the
four models, (C) influenza trees and (E) HIV trees. The t-SNE plots of the polynomial binary differences between
(B) random trees generated by the four models, (D) influenza trees and (F) HIV trees.

(Novitsky, 2013) and a national-level dataset from South Africa (Hunt, 2013). As with

influenza virus, it is to be hoped that these different epidemiological patterns are revealed

in the shapes of reconstructed phylogenetic trees (Chindelevitch, 2019; Colijn, 2018).

We visualize the polynomial distances between trees in these two sets by classical

MDS in Figure 2 C,E. The MDS suggests that the polynomial metric may not cluster these

trees into the desired groups. However, all the information of the trees’ shapes is encoded

in their polynomials. We compute the polynomial binary similarities between the these
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trees. Binary similarities, based on presence and absence of components, are one of the

commonly used indices in, for example, taxonomic, ecologic, biogeographic comparison and

classification (Choi, 2010). They provide effective insights about clusters though they are

not metrics in general. The polynomial binary similarity we choose is the number of terms

that are present in the polynomial of one tree but are absent in the polynomial of the other.

We visualize the polynomial binary similarities between these trees by the t-distributed

stochastic neighbor embedding or t-SNE (van der Maaten, 2008). The results are displayed

in Figure 2 B,D,F. The influenza trees and the HIV trees are very well separated into

desired groups under the binary similarity measure with the t-SNE visualization; note that

the group information (which trees were from tropical or USA flu, or which HIV trees were

from which data source) is not supplied to the t-SNE. This indicates that classifying the

epidemiological process behind a tree using the metric would likely be possible. For these

particular challenges, however, typically a researcher would know whether their data were

from the tropics or not, or what the broad epidemiological setting (village, national,

Western population MSM) was at the time of collection. We therefore focus on more

specific estimation questions (parameter estimation and model choice).

Parameter and Model Estimation

Parameter estimation The polynomial can be used to estimate the parameter p in

the biased speciation model (see Methods).Figure 3 A displays the estimated values and

the true values of the p parameters for the 1,000 simulated biased trees with 25 tips. We

also conduct the same examination for the method on biased trees with 100 tips and 400

tips. The results are displayed in Figure 3 C,E. The method has better performance for

trees of large sizes, and the results from the polynomial and the Sackin-cherry vector are

similar.

The other method is linear regression; Figure 3 B displays the estimated and true

values of the p parameters of the 1,000 trees. The results of the same examination of the
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method for biased trees with 100 tips are displayed in Figure 3 D. We find that the

polynomial performs better than the Sackin-cherry vector, and moreover, for biased trees

with 100 tips, the linear regression method with polynomial coefficients produces better

results than the polynomial metric. Linear regression also carries the advantage that we

can identify the traits of trees that are most related to the biased speciation parameter p

from the statistically significant coefficients in the model, since the coefficients of a

polynomial are interpretable. In Supplementary Table 1, the most statistically significant

terms in the polynomial are shown. For example, the coefficient of the term y2 equals the

number of ways to choose two clades that contains all the tips. For binary trees, this

coefficient indicates if the tree has an adjacent tip to the root or not, which is an

important factor of determining the imbalance of a tree.

We estimate the parameter p for the WHO influenza virus clades A1B/135N (60

tips), A1B/135K (63 tips), 3c3.B (117 tips) and A3 (227 tips). Due to the sizes of the

clades, we use the method based on the metric (with both the polynomial and the

Sackin-cherry vector) to estimate their parameters. For each clade, we estimate its

parameter 1,000 times; the distributions of the estimates are displayed in Figure 3 F. For

these clades, we find that the values estimated by the polynomials are smaller than those

estimated values by the Sackin-cherry vectors. In general, we find that this difference

between the two kinds of estimated values is common for trees generated by the PDA

model and the Aldous model, though both polynomials and the Sackin-cherry vectors

provide faithful estimates for trees generated by the biased speciation model (See

Supplementary Figure 5). This suggests that the influenza clades are most similar to the

trees generated by the PDA model or the Aldous model.

Model estimation Figure 2 A suggests that it is possible to estimate the model

that is the best fit for generating a given tree using the polynomial. We use naive Bayes

classifiers to estimate the model that is the best fit for a given tree. The results are

displayed in Figure 4 A for 100 tips and Figure 4 B for 400 tips. There is very little
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Figure 3. The plots of data points of true values and estimated values of parameter p by the 3-nearest neighbor
method for trees generated by the biased speciation model with (A) 25 tips, (C) 100 tips and (E) 400 tips. The
plots of data points of true values and estimated values of parameter p by the linear regression method for trees
generated by the biased speciation model with (B) 25 tips and (D) 100 tips. (F) The distributions of the estimates
of the parameter p for the chosen WHO influenza virus clades.

mis-classification between PDA and Yule trees, or between PDA and biased trees, but there

is mis-classification among Aldous-Yule and biased-Yule. The performance is again better

for larger trees, in the sense that there are fewer mis-classifications in Figure 4B than in A.

For each of the chosen WHO influenza virus clades, we train 1,000 naive Bayes

classifiers, where the parameter p of the biased speciation model is set to be the clade’s



16 P. LIU, M. GOULD, AND C. COLIJN

Figure 4. The frequencies of model estimation by naive Bayes classifiers for (A) random trees with 100 tips, (B)
random trees with 400 tips and (C) the influenza clades. (D) The mean conditional a posteriori probabilities (over
the 1,000 naive Bayes classifiers) of the model estimation for the influenza clades.

estimated value of p by the method based on the polynomial tree metric and the k-nearest

neighbor algorithm, and we use the classifiers to estimate the model that is the best-fit for

generating these clades. Figure 4 C,D display the results of, which show that the best-fit

models for the clades are most likely to be the Aldous model or the PDA model among the

four models that we use. This coincides with the results suggested by the differences

between estimated values of parameter p by polynomials or Sackin-cherry vectors.

To further confirm the model estimates for the WHO influenza virus clades, we

visualize the polynomial distances between the influenza virus clades and random trees

generated by the PDA model, the Aldous model and the biased speciation model with the

estimated values of parameter p for each of the clades. The results support naive Bayes

classification results, in that the best-fit models for the clades are most likely to be the

Aldous model or the PDA model (See Supplementary Figure 6, 7, 8 and 9). As an

example, for the clade 3c3.B (117 tips), the 2-D MDS plot in Supplementary Figure 8 A
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suggests that the clade is similar to the biased and PDA trees, and the 2-D t-SNE plot in

Supplementary Figure 8 B shows that the clade is near the cluster of the PDA trees, which

is also suggested by finding the nearest random tree to the clade. The nearest biased tree

and the nearest tree (a PDA tree) to the clade are displayed in Supplementary Figure 8

C,E. It is observed that neither the nearest biased tree nor the nearest PDA tree resembles

the clade. This is also observed in Figure 4 C,D: 271 out of the 1,000 estimates are the

biased model and 729 estimates are the PDA model.

Discussion

We have developed polynomial-based tree comparison methods. Unlike other

metrics and some comparisons on unlabelled trees, the polynomials are easy to compute,

and the coefficients are interpretable. This opens up a wide range of dimension reduction

and machine learning tools for application in phylogenetics. The methods discussed in this

paper include a tree metric, a linear regression algorithm and classification with naive

Bayes. These methods can distinguish trees from different models and different data sets,

help estimate parameters, and aid in model selection. We have also applied the methods to

estimate a parameter and select the best-fit model for the chosen WHO influenza virus

clades. The results show that the tree shapes of the influenza clades are most similar to

random trees generated by either the Aldous model or the PDA model among the models

that we use. Moreover, the polynomials have the potential to be extended to record

information about the branch lengths.

To compare trees with different sizes is another challenge in tree comparison. In this

paper, we have compared trees with the same number of tips and we have proposed a way

to compare trees with different sizes. We align the coefficient vectors so that the number of

corresponding clade sizes are compared. In our demonstration treeverse, trees with

different sizes are compared and the distances between the trees are visualized by an

interactive 3-D MDS plot. There are other ways to align the coefficient vectors and
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compare trees with different sizes, but for trees whose sizes are drastically different, the

sizes of trees remain a dominating factor in comparing trees with the method.

Because polynomial coefficients can be treated as vectors, and vectors give rise to

metrics, there are various alternative metrics that can be defined using tree polynomials,

both those used here and others (Andrén, 2009; Chaudhary, 1991; Negami, 1996). Once

trees are encoded as vectors, a range of regression, inference and dimension reduction tools

are available that can be applied to trees. In addition, other tree shape statistics or other

information about the trees can be easily appended to the vectors to integrate distinct

sources of data. This provides a scheme to study phylogenetic trees comprehensively.

There remains considerable scope to improve the linear regression and classification

tools used here, which we used to demonstrate that parameter estimation and model

choice can be done. One challenge in this work is that there are too many polynomial

coefficients; however, feature selection, hyperparameter optimization and dimension

reduction tools could be used to reduce the number of features in a systematic way.

Furthermore, we focused on a one-dimensional estimation task (estimating the bias

parameter p). Realistic models of evolution are likely to contain multiple parameters (for

example, time-dependent speciation and extinction rates; intra- and inter-group

competition parameters, relative fitness), and the brute-force search we performed will not

be possible in higher dimensions. However, given a smaller number of coefficients and other

features that characterize a dataset, the tools of modern statistical inference are available

for this task. The simpler estimation we have provided is a proof of principle for using

polynomial coefficients in such estimation tasks.
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Supplementary Figure 1. (A) The 95% confidence band of the fitted curve for maximum polynomial distances
between trees with the same number of tips, (the data points fit the curve y = 0.0112x3.324 + 0.9642 with
R2 = 0.9992). (B) The 95% confidence band of the fitted curve for the average minimum distances between a tree
and the nearest tree with the same number of tips, (the data points fit the curve y = 0.0026x2.3046 + 2.0218 with
R2 = 0.9866).

Supplementary Material

Interactive Figures

We made some interactive 3-D plots for the data sets discussed in the paper, which

are available at: https://magpiegroup.shinyapps.io/interactivefigures/

Supplementary Results

Distance values in and of themselves are difficult to interpret without a sense of the

overall scale or range. We compute how the distance scales with the number of tips n in

the trees using trees with 4 to 17 tips. Supplementary Figure 1 A shows how the maximum

polynomial distances between all rooted binary trees of a size n depends on n. For an

arbitrary tree T with n tips, there exists a nearest tree T ′ in the polynomial metric space

of trees with n tips. We define the polynomial distance between T and T ′ to be the

minimum polynomial distance for T in the space. The average minimum polynomial

distance for trees with n tips is the average of minimum polynomial distances for all trees

with n tips. Supplementary Figure 1 B shows the average minimum polynomial distances

between all rooted binary trees with the same number of tips.

The horseshoe shape in the MDS plot of the random trees generated by the four
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models suggests that there may be a latent parameter (Diaconis, 2008) ranging across the

horseshoe. We compute the Sackin indices and the number of cherries of the random trees

and display the results in Supplementary Figure 2. We find that neither the Sackin nor

cherry frequency is likely to be this latent parameter, as neither range from large to small

across the horseshoe; our results suggest that both are correlated with the (unknown)

latent parameter.

Supplementary Figure 2. (A) The Sackin indices and (B) the number of cherries of random trees with 500 tips
generated by the four models on the MDS plot of their polynomial distances as displayed in Figure 2 A.

We also display the t-distributed stochastic neighbor embedding plots of the

polynomial distances and the classical multidimensional scaling plots of the polynomial

binary differences between the random trees generated by the four models, the influenza

trees and the HIV trees as complements to Figure 2 (Supplementary Figure 3). We

compare the differences between the polynomial distances and the Euclidean distances in

the visualizations by MDS and t-SNE. See the Shepard plots in Supplementary Figure 4

A,B, where we generate 25 trees with 100 tips using each of the four models. We also

compare the polynomial metric with the metric d2 defined by a labeling scheme defined in

(Colijn, 2018) (Supplementary Figure 4 C).

When introducing using the naive Bayes classifiers to estimate the model that

generates a given tree, we defined the complex polynomial, substituting the variable y by

1 + i in the polynomial. We can define a metric using the complex polynomial in the same

fashion. More specifically, Let ci1 and ci2 be the coefficients of the term xi in the complex
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Supplementary Figure 3. The t-SNE plots of the polynomial distances between (A) random trees with 500 tips
generated by the four models, (C) influenza trees and (E) HIV trees.The MDS plots of the polynomial binary
differences between (A) random trees with 500 tips generated by the four models, (C) influenza trees and (E) HIV
trees.

polynomials of two arbitrary tree T1 and T2 with n1 and n2 tips respectively. We define the

complex metric as follows.

dc(T1, T2) =
∑

06i,j6n

log
( ∣∣ci1 − ci2∣∣+ 1

)
.

In the formula, n = max(n1, n2) and |ci1 − ci2| denotes the norm of the complex difference.

The comparison of the polynomial metric and the complex polynomial metric is displayed

in Supplementary Figure 4 D. The complex polynomial of a tree has fewer variables, which
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Supplementary Figure 4. The Shepard plots of the polynomial distances and the Euclidean distances in (A) the 2-D
MDS plot, (B) the 2-D t-SNE plot of random trees with 100 tips generated by the four models. The comparison of
(C) the polynomial distances and the labeling distances d2 (Colijn, 2018) and (D) the polynomial distances and the
complex polynomial distances between random trees with 100 tips generated by the four models. The average
computational speed (E) of the polynomial of a rooted binary tree with various number of tips (the data points fit
the curve 6.658× 10−12x4.039 with R2 = 0.9992), and (F) of the complex polynomial of a rooted binary tree with
various number of tips, (the data points fit the curve y = 3.672× 10−9x2 + 1.729× 10−6x + 3.687× 10−4 with
R2 = 0.9932).

makes it good for regression or machine learning tools, and its computation is more

efficient than the general polynomial. This is because computing the general polynomial

requires repeated multiplication of polynomials with growing length and magnitude of

coefficients. We use a direct approach where every combination of nonzero coefficients must

be visited in the multiplication. Since the complex polynomial is a function of one variable,
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it is convenient and more efficient to use a one-dimensional convolution for the polynomial

multiplication. The computational speeds of the two polynomials are displayed in

Supplementary Figure 4 E,F.

Residuals
Min. 1Q Median 3Q Max.
-0.216949 -0.034936 -0.000871 0.034743 0.258618
Coefficients
Interpretation Term Estimate Std. Error t value Pr(> |t|)
2 clades, 25 tips y2 -0.0064270 0.0010688 -6.013 1.82e-09 ∗∗∗

3 clades, 25 tips y3 -0.0153878 0.0017633 -8.727 < 2e-16 ∗∗∗

2 clades, 24 tips xy2 -0.0117466 0.0008665 -13.556 < 2e-16 ∗∗∗

3 clades, 24 tips xy3 -0.0115123 0.0017150 -6.713 1.92e-11 ∗∗∗

4 clades, 24 tips xy4 -0.0300614 0.0043451 -6.918 4.59e-12 ∗∗∗

2 clades, 23 tips x2y2 -0.0057458 0.0008000 -7.182 6.91e-13 ∗∗∗

3 clades, 23 tips x2y3 -0.0083084 0.0018331 -4.533 5.84e-06 ∗∗∗

3 clades, 22 tips x3y3 0.0148055 0.0021410 6.915 4.70e-12 ∗∗∗

2 clades, 21 tips x4y2 0.0076429 0.0008286 9.224 < 2e-16 ∗∗∗

3 clades, 21 tips x4y3 0.0172132 0.0026160 6.580 4.73e-11 ∗∗∗

2 clades, 19 tips x6y2 -0.0066565 0.0010694 -6.224 4.85e-10 ∗∗∗

2 clades, 18 tips x7y2 -0.0086339 0.0012577 -6.865 6.69e-12 ∗∗∗

Supplementary Table 1. The summary of fit report for estimating parameter p of random trees with 25 tips by
linear regression with polynomial coefficients, where only the most statistically significant terms are displayed.

Estimating a parameter by linear regression with the polynomials carries the

advantage that the most statistically significant terms in the polynomial can be identified.

Since the terms in the polynomial are interpretable, the traits of trees that a related to the

parameter can be spotted in the summary of fit report. Supplementary Table 1 displays a

report of fitting the biased speciation parameter p with the polynomial coefficients of trees

with 25 tips. The most statistically significant terms are listed in the table. Recall that the

coefficient c(α,β) in the polynomial P (T ) indicates the number of ways to choose β clades

with n− α tips in total for a tree T with n tips. For example, the coefficient of the y3 term

represents the number of ways to choose 3 clades that contain all the tips of the tree and

the coefficient of the x4y2 term represents the number of ways to choose 2 clades that

contain 21 tips in total.
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Supplementary Figure 5. Distributions of estimated values of parameter p for random trees by 3-nearest neighbors.
1,000 trees with 100 tips are generated for each model.

To investigate the observation in Figure 3 F that the polynomial-estimated values

of the parameter for the influenza virus clades are smaller than the values estimated with

Sackin-cherry vectors, we generate 1,000 trees with 100 tips using each of the Yule model,

the PDA model, the Aldous model and the biased speciation model with p = 0.05. We

estimate the parameter p of these trees by the 3-nearest neighbor method with polynomials

and Sackin-cherry vectors respectively. The results are displayed in Supplementary Figure

5. We find that for trees generated by the PDA model and the Aldous model, the

polynomial-estimated values of the parameter p are smaller than the values estimated with

Sackin-cherry vectors. The results suggest that the influenza clades are more similar to the

trees generated by the PDA model or the Aldous model than to the other models.

For each of the influenza clades, we generate 200 random trees using each of the

Aldous model, the PDA model and the biased model with parameter p equal the

polynomial estimated value for the clade. We compute the polynomial distances between
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the random trees and the clade. We also plot the random tree and the biased tree that

have the minimum polynomial distance to the clade. See Supplementary Figure 6, 7, 8 and

9. These results coincide with the results predicted by the naive Bayes classifiers.
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Supplementary Figure 6. The polynomial distances between the random trees and clade A1b135N visualized by (A)
MDS and (B) t-SNE. The tree shapes of (C) the nearest biased tree in the sample to the clade (with polynomial
distance 4331.28), (D) clade A1b135N, and (E) the nearest tree (an Aldous tree) in the sample to the clade (with
polynomial distance 4210.54).
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Supplementary Figure 7. The polynomial distances between the random trees and clade A1b135K visualized by (A)
MDS and (B) t-SNE. The tree shapes of (C) the nearest biased tree in the sample to the clade (with polynomial
distance 5302.63), (D) clade A1b135K, and (E) the nearest tree (an Aldous tree) in the sample to the clade (with
polynomial distance 5240.62).
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Supplementary Figure 8. The polynomial distances between the random trees and clade 3c3.B visualized by (A)
MDS and (B) t-SNE. The tree shapes of (C) the nearest biased tree in the sample to the clade (with polynomial
distance 27516.24), (D) clade 3c3.B, and (E) the nearest tree (a PDA tree) in the sample to the clade (with
polynomial distance 27389.11).
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Supplementary Figure 9. The polynomial distances between the random trees and clade A3 visualized by (A) MDS
and (B) t-SNE. The tree shapes of (C) the nearest biased tree in the sample to the clade (with polynomial distance
293371.38), (D) clade A3, and (E) the nearest tree (a PDA tree) in the sample to the clade (with polynomial
distance 258466.72).
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