
Nested Active Learning for Efficient Model Contextualization and Parameterization
Chase Cockrell, Jonathan Ozik, Nick Collier, and Gary An

Abstract: The description of the environment in which a biomedical simulation operates (model
context) and parameterization of internal model rules (model content) requires the optimization of a
large number of free-parameters; given the wide range of variable combinations, along with the
intractability of ab initio modeling techniques which could be used to constrain these combinations, an
astronomical number of simulations would be required to achieve this goal. In this work, we utilize a
nested active-learning workflow to efficiently parameterize and contextualize an agent-based model of
sepsis. Methods: Billions of microbial sepsis patients were simulated using a previously validated
agent-based model (ABM) of sepsis, the Innate Immune Response Agent-Based Model (IIRABM).
Contextual parameter space was examined using the following parameters: cardio-respiratory-
metabolic resilience; two properties of microbial virulence, invasiveness and toxigenesis; and degree
of contamination from the environment. The model’s internal parameterization, which represents gene
expression and associated cellular behaviors, was explored through the augmentation or inhibition of
signaling pathways for 12 signaling mediators associated with inflammation and wound healing. We
have implemented a nested active learning approach in which the clinically relevant model
environment space for a given internal model parameterization is mapped using a small Artificial
Neural Network (ANN). The outer AL level workflow is a larger ANN which uses a novel approach to
active learning, Double Monte-Carlo Dropout Uncertainty (DMCDU), to efficiently regress the volume
and centroid location of the CR space given by a single internal parameterization. Results: A brute-
force exploration of the IIRABM’s content and context would require approximately 3*1012 simulations,
and the result would be a coarse representation of a continuous space. We have reduced the number
of simulations required to efficiently map the clinically relevant parameter space of this model by
approximately 99%. Additionally, we have shown that more complex models with a larger number of
variables may expect further improvements in efficiency.

Introduction
Sepsis in an inflammatory condition with a mortality rate of between 28%-50%(1). Numerous
mechanistic computational simulations of acute inflammation and sepsis have been utilized over the
past two decades(2-9). These models have demonstrated that the sepsis population is much more
heterogeneous than previously thought and this can be reflected by utilizing a range of
multidimensional parameters that correlate to biologically plausible behaviors and phenotypes.
Despite insights generated form these methods, there remain considerable challenges in the
calibration and parameterization of the models. The description (contextualization) of the environment
in which a biomedical simulation operates and parameterization of internal model rules (model
content) requires the optimization of a large number of free-parameters; given the wide range of
variable combinations, along with the intractability of ab initio modeling techniques which could be
used to constrain these combinations, an astronomical number of simulations would be required to
achieve this goal.

The problem of combinatorial complexity in the selection of model parameters is well-established in
the computational/biological modeling communities (10-14). In previous work (2), we utilized high-
performance computing to demonstrate the need for comprehensive “data coverage” among possible
model states as well as the importance of internal parameter variation (as compared to model
structure) to capture the full range of biological heterogeneity seen clinically. In order to render this
task computationally tractable, we have employed a nested active learning approach in order to
efficiently and comprehensively explore model parameter space.

IIRABM: The primary model analyzed in this work is the Innate Immune Response Agent Based
Model (IIRABM) (3, 15). The IIRABM is an abstract representation/simulation of the human
inflammatory signaling network response to injury; the model has been calibrated such that it
reproduces the general clinical trajectories seen in sepsis. The IIRABM operates by simulating

multiple cell types and their interactions, including endothelial cells, macrophages, neutrophils, TH0,
TH1, and TH2 cells as well as their associated precursor cells. The simulated system dies when total
damage (defined as aggregate endothelial cell damage) exceeds 80%; this threshold represents the
ability of current medical technologies to keep patients alive (i.e., through organ support machines) in
conditions that previously would have been lethal. The IIRABM is initiated using 5 external variables –
initial injury size, microbial invasiveness, microbial toxigenesis, environmental toxicity, and host
resilience

Active Learning: Active learning (AL) is a sub-field of machine learning (ML) which focusses on
finding the optimal selection of training data to be used to train a ML or statistical model (16). AL can
be used for classification (17, 18) or regression (19, 20). AL is considered to be an ideal technique for
modeling problems in which there is a large amount of unlabeled data and manually labelling that data
is expensive. In these circumstances (specifically the costly data labelling) AL provides to most
generalizable and accurate model for the cheapest cost, which for the purposes of this work, is
computation time.

EMEWS: Our ML models are trained and integrated using the Extreme-scale Model Exploration With

Swift (EMEWS) framework (21-23). EMEWS enables the creation of high-performance computing

(HPC) workflows for implementing large-scale model exploration studies. Built on the general-purpose
parallel scripting language Swift/T (24), multi-language tasks can be combined and run on the largest
open science HPC resources (25) via both data-flow semantics and stateful resident tasks. The ability
that EMEWS provides for incorporating model exploration algorithms such as AL, implemented in R or
Python, allows for the direct use of the many libraries relevant to ML that are being actively developed
and implemented as free and open source software.

Methods
The lower-level AL procedure seeks to find the boundary of the parameter space deemed “clinically

relevant” (2) as a function of four parameters which describe the context in which the IIRABM

operates: two measures of microbial virulence (invasiveness and toxigenesis), host resilience, and
environmental toxicity. In this scheme, there are two classes: clinically relevant and not clinically
relevant. We assume that there exists some function,

𝑦 = 𝑓(𝑥⃑), 𝑥 ∈ 𝜒 ⊂ ℝ𝑛, 𝑦 ∈ ℝ
which accurately classifies model context parameters can be approximated given input data from the
training set:

𝐷𝑡𝑟𝑎𝑖𝑛 = {𝑥𝑗
𝑡, 𝑓(𝑥𝑗

𝑡)}

for 𝑗 = 1, … , 𝑛. The NN model uses a binary cross-entropy (26) loss function, in which the loss is given
by:

𝐿 = − ∑ 𝑦𝑖log (𝑦̂𝑖)

2

𝑖=1

Where 𝑦𝑖 is the ground truth value and 𝑦̂𝑖 is the NN-approximated score. The AL algorithm begins with
a randomly selected set of 20 points. The IIRABM simulation then runs a fixed number of stochastic
replicates of the input points to determine class membership. This information is then used to train the
ML model. The algorithm then ranks the remaining unlabeled parameterizations by class-membership
uncertainty (see Eq. 1).

{𝑥𝑖+1} = min
𝑥

(0.5 − 𝑃𝑖(𝑦|𝑥))

Those parameterizations whose class is most uncertain in the current ML model are then selected for
labeling and the process repeats until a stopping criterion is reached; for the purposes of this work,
once the cross-validation accuracy crossed 0.95, the algorithm was stopped.

The upper-level AL workflow uses a modified version of Dropout-based AL for regression presented in
(20), hence referred to as Double Monte-Carlo Dropout Uncertainty Estimation (DMCDUE). The goal

of this AL-workflow is twofold: to predict the volume of CR space and to predict the centroid location of
CR-space, given a model internal parameterization. For each regression task, we assume that there
exists a function,

𝑦 = 𝑓(𝑥⃑), 𝑥 ∈ 𝜒 ⊂ ℝ𝑛, 𝑦 ∈ ℝ
which approximates a map of CR space as a function of internal model parameterization which
comprises the training set:

𝐷𝑡𝑟𝑎𝑖𝑛 = {𝑥𝑗
𝑡, 𝑓(𝑥𝑗

𝑡)}

for 𝑗 = 1, … , 𝑛. The NN model uses a mean-squared error (MSE) loss function, given by:

𝐿 = ∑ (𝑓(𝑥𝑖
𝑡) − 𝑓(𝑥𝑖

𝑡))
2

𝑛

𝑖=1

Where 𝑓𝑖 is the ground truth value for either the CR volume or centroid and 𝑓𝑖 is value regressed by
the NN. In this scheme, we utilize a four-layer fully-connected neural network with a 256-Dropout-128-
Dropout architecture. The dropout layer (27) serves to provide a stochastic variability to the output of

the NN.

We begin by pre-selecting 10,000 (out of
40,353,607) internal parameterizations
randomly; this random selection then makes up
the available pool, 𝒫,of unlabeled data. From
this pool, we begin the AL procedure by
selecting 100 internal parameterizations
randomly from 𝒫. These internal
parameterizations are then fed into the lower-
level AL workflow, which is used to map the CR
space and return an approximate volume and
center-point. This data is then used to train the

upper-level neural net (see Fig. 1). The trained
NN is then used to predict the volume or
centroid location for the remaining unlabeled

data for 10 stochastic replicates (the dropout layer provides stochasticity). The parameterizations
from 𝒫 which have the highest variance are selected for labeling, and this process repeats.
Pseudocode for this procedure is given below:

1. Initialize training pool 𝒫𝑈; upper-level dataset 𝐷𝐼𝑃; 𝑧𝑢, the maximum size of the dataset; and 𝑚𝑢
samples to be added on each iteration,

2. While |𝐷𝐼𝑃| < 𝑧𝑢:
a. For each element i in 𝐷𝐼𝑃:

i. Initialize training pool 𝒫𝐿; lower-level dataset 𝐷𝐸𝑃; 𝑧𝑙, the maximum size of the

dataset; and 𝑚𝑙 samples to be added on each iteration,
ii. While |𝐷𝐸𝑃| < 𝑧𝑙:

1. Train network on 𝐷𝐸𝑃
2. Obtain rank 𝑟𝑗 for each 𝑥𝑗 in 𝒫𝐿 according to maximum class-uncertainty

3. Label the set of 𝑚𝑙 parameterizations from 𝒫𝐿

4. Add the annotated data to 𝐷𝐸𝑃
5. Calculate stopping metrics, stop if appropriate

b. Train network on 𝐷𝐼𝑃

c. Obtain rank 𝑟𝑖 for each 𝑥𝑖 in 𝒫𝑈 according to maximum regression variance
d. Label the set of 𝑚𝑢 parameterizations from 𝒫𝑢

e. Add the annotated data to 𝐷𝐼𝑃
f. Calculate stopping metrics, stop if appropriate

Source code and input data can be found at: https://bitbucket.org/cockrell/iirabm_al/

Figure 1: A diagram illustrating the nested active learning workflow

https://bitbucket.org/cockrell/iirabm_al/

Results
In the lower-level AL workflow, we map CR space as a function of four parameters, external to the
IIRABM’s internal rule set. An example of this space can be seen in Fig. 2. In this figure, outcome
spaces for patients with low environmental toxicity (toxicity=1) to high environmental toxicity
(toxicity=10) are shown from left to right. Each point represents 4000 in silico patients (40 injury sizes,
100 stochastic replicates). Points are color-coded based on the outcomes generated. The CR space
is shown in green.

Figure 2: Outcome spaces for patients with low environmental toxicity (toxicity=1) to high environmental toxicity (toxicity=10) are shown from
left to right.

We utilized seven different ML models to map the CR space: Artifical Neural Net, Adaptive Boosting,
Naïve Bayesian, Random Forest, TreeBag, AdaBoost M1, Bag – Flexible Discriminant Analysis with
Generalized Cross Validation. Results from this are shown in Fig. 3, which displays the F-score as a
function of AL iteration number (and by proxy, dataset size).

It is readily apparent that a NN is the best type of ML
model for mapping this space. By iteration 10,
which uses 1000 parameterizations (out of 8800
possible), we can achieve an average class-
prediction accuracy of >98%. The resulting ML
model is then utilized to efficiently calculate the
location and centroid of the CR space and train the
upper-level neural net. Results from the upper-level
AL procedure are shown in Figure 4. In panel A, we
display the percent volume error as a function of the
number of training samples for AL, Random
Sampling (RS), and “Actively Non Learning” (ANL).

ANL refers to utilizing the opposite of the AL
sampling criterion. In this case, for AL we chose
samples that maximized prediction variance; for

ANL, we chose samples that minimized prediction variance. As expected, AL outperforms RS and
requires fewer samples to converge to the error minimum. Additionally, both methods significantly
outperform ANL, as expected. In Panel B, we show the standard deviation of the error for the previous
three methods. Here, AL significantly outperforms RS in that the intelligent sampling criterion leads to
a suite of models with a larger degree of precision in the volume prediction, whereas the changes in
standard deviation of the error are minimal for ANL and minimal for RS after the first few samples.
Panel C displays the error (as a Euclidean distance) as a function of the number of samples. Once
again, AL outperforms RS, though by a relatively modest amount.

Figure 3: F-score as a function of Active-Learning iteration for a
suite of ML techniques

Discussion
We have described a nested active learning workflow which efficiently and accurately can characterize
a high-dimensional Random Dynamical System. We remove inefficiencies due to oversampling small
regions of parameter space using the Double Monte-Carlo Dropout Uncertainty Estimation (DMCDUE)
approach. We note that AL outperforms RS in both the volume and centroid location predictions, but
the greatest strength comes from the significant increase in precision generated by a suite of AL-
trained models.

This work demonstrates that comprehensive (and accurate) exploration of computational models with
many parameters is both possible and computationally tractable, given current techniques in machine
learning and high-performance computing.

Acknowledgements
This research used high performance computing resources of the National Energy Research Scientific
Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC02-05CH11231, as well as resources provided
by the Vermont Advanced Computing Core (VACC). Additionally, this research was supported in part
by NIH through resources provided by the University of Chicago Computation Institute (Beagle2) and
the Biological Sciences Division of the University of Chicago and Argonne National Laboratory, under
grant 1S10OD018495-01. This work was also supported by funds from Lawrence Livermore National
Laboratory under Award #B616283.

Figure Captions

Figure 1: A diagram illustrating the nested active learning workflow

Figure 2: Outcome spaces for patients with low environmental toxicity (toxicity=1) to high
environmental toxicity (toxicity=10) are shown from left to right. Each point represents 4000 in silico
patients (40 injury sizes, each with 100 stochastic replicates). Points are color-coded based on the
outcomes generated. Blue points represent simulations that healed under all circumstances. These
points are distributed in regions of space where host resilience is high and the bacterial virulence is
low (lower invasiveness and lower toxigenesis). Red points represent simulations that always died
from overwhelming infection; these points are distributed in regions of high bacterial virulence (higher
values for invasiveness and toxigenesis). Black points represent simulations that either died from
overwhelming infection or healed completely and mark the boundary between simulations that always
heal and simulations always die from infection. Pink points represent simulations which either died
from overwhelming infection or hyperinflammatory system failure; these points are found primarily in
the simulations that were treated with antibiotics and had low values for environmental toxicity and
host resilience. Green points represent the Clinically Relevant simulations as these parameter sets
lead to all possible outcomes; these points are distributed in regions of low to middle values of the

host resilience parameter and moderately virulent infections. For all classes of simulation, the final
outcomes are primarily dependent on the host resilience and microbial virulence

Figure 3: Results from Lower-Level AL – Clinically Relevant space (see Fig. 2) is mapped as a
function of four parameters, external to the IIRABM’s internal rule set. We utilized seven different ML
models to map the CR space: Artifical Neural Net, Adaptive Boosting, Naïve Bayesian, Random
Forest, TreeBag, AdaBoost M1, Bag – Flexible Discriminant Analysis with Generalized Cross
Validation. The F-score is shown on the y-axis as a function of the number of AL iterations performed.

Figure 4: Results from Upper-Level AL –In Panel A, we show the percent volume error as a function
of the number of input training samples using Active Learning (AL), Random Sampling (RS), and
Actively Not Learning (ANL), in which the learning criterion is the opposite of the AL criterion. We see
that AL arrives at a more accurate prediction with fewer samples than RS or ANL. In Panel B, we
show the standard deviation of the error of the volume prediction for the three above methods and
note that AL not only generates a suite of more accurate models, but also has a much higher degree
of precision. In Panel C, we show the error (in this case a Euclidean distance) in the centroid location
prediction. AL once again outperforms RL.

1. Wood KA, Angus DC. Pharmacoeconomic implications of new therapies in sepsis.

Pharmacoeconomics. 2004;22(14):895-906.

2. Cockrell C, An G. Sepsis reconsidered: Identifying novel metrics for behavioral landscape

characterization with a high-performance computing implementation of an agent-based model. J Theor

Biol. 2017;430:157-68.

3. Cockrell RC, An G. Examining the controllability of sepsis using genetic algorithms on an

agent-based model of systemic inflammation. PLoS computational biology. 2018;14(2):e1005876.

4. An G, Nieman G, Vodovotz Y. Computational and systems biology in trauma and sepsis: current

state and future perspectives. International journal of burns and trauma. 2012;2(1):1.

5. Goldman D, Bateman RM, Ellis CG. Effect of sepsis on skeletal muscle oxygen consumption

and tissue oxygenation: interpreting capillary oxygen transport data using a mathematical model.

American Journal of Physiology-Heart and Circulatory Physiology. 2004.

6. Vodovotz Y, Billiar TR. In Silico Modeling: Methods and Applications toTrauma and Sepsis.

Critical care medicine. 2013;41(8):2008.

7. Vodovotz Y. Computational modelling of the inflammatory response in trauma, sepsis and

wound healing: implications for modelling resilience. Interface focus. 2014;4(5):20140004.

8. Siqueira-Batista R, Gomes A, Possi M, Oliveira A, Sousa F, Silva C, et al., editors.

Computational modeling of sepsis: perspectives for in silico investigation of antimicrobial therapy. II

International Conference on Antimicrobial Research-ICAR2012 Lisbon (Portugal); 2012.

9. An G, Nieman G, Vodovotz Y. Toward computational identification of multiscale “tipping

points” in acute inflammation and multiple organ failure. Annals of biomedical engineering.

2012;40(11):2414-24.

10. Karp RM. On the computational complexity of combinatorial problems. Networks.

1975;5(1):45-68.

11. Sneddon MW, Faeder JR, Emonet T. Efficient modeling, simulation and coarse-graining of

biological complexity with NFsim. Nature methods. 2011;8(2):177.

12. Hopfield JJ, Tank DW. “Neural” computation of decisions in optimization problems. Biological

cybernetics. 1985;52(3):141-52.

13. Edwards R, Glass L. Combinatorial explosion in model gene networks. Chaos: An

Interdisciplinary Journal of Nonlinear Science. 2000;10(3):691-704.

14. Neumann F, Witt C. Combinatorial optimization and computational complexity. Bioinspired

Computation in Combinatorial Optimization: Springer; 2010. p. 9-19.

15. Cockrell C, Christley S, An G. Investigation of Inflammation and Tissue Patterning in the Gut

Using a Spatially Explicit General-Purpose Model of Enteric Tissue (SEGMEnT). PLoS computational

biology. 2014;10(3):e1003507.

16. Cohn DA, Ghahramani Z, Jordan MI. Active learning with statistical models. Journal of

artificial intelligence research. 1996;4:129-45.

17. Brinker K. On active learning in multi-label classification. From Data and Information Analysis

to Knowledge Engineering: Springer; 2006. p. 206-13.

18. Huang S-J, Jin R, Zhou Z-H, editors. Active learning by querying informative and

representative examples. Advances in neural information processing systems; 2010.

19. Schein AI, Ungar LH. Active learning for logistic regression: an evaluation. Machine Learning.

2007;68(3):235-65.

20. Tsymbalov E, Panov M, Shapeev A, editors. Dropout-Based Active Learning for Regression.

International Conference on Analysis of Images, Social Networks and Texts; 2018: Springer.

21. Ozik J, Collier NT, Wozniak JM, Macal CM, An G. Extreme-Scale Dynamic Exploration of a

Distributed Agent-Based Model With the EMEWS Framework. IEEE Transactions on Computational

Social Systems. 2018(99):1-12.

22. Ozik J, Collier N, Wozniak JM, Macal C, Cockrell C, Friedman SH, et al. High-throughput

cancer hypothesis testing with an integrated PhysiCell-EMEWS workflow. BMC bioinformatics.

2018;19(18):483.

23. Ozik J, Collier NT, Wozniak JM, Spagnuolo C, editors. From desktop to large-scale model

exploration with Swift/T. 2016 Winter Simulation Conference (WSC); 2016: IEEE.

24. Wozniak JM, Armstrong TG, Wilde M, Katz DS, Lusk E, Foster IT, editors. Swift/t: Large-scale

application composition via distributed-memory dataflow processing. 2013 13th IEEE/ACM

International Symposium on Cluster, Cloud, and Grid Computing; 2013: IEEE.

25. Wozniak JM, Jain R, Balaprakash P, Ozik J, Collier NT, Bauer J, et al. CANDLE/Supervisor: A

workflow framework for machine learning applied to cancer research. BMC bioinformatics.

2018;19(18):491.

26. De Boer P-T, Kroese DP, Mannor S, Rubinstein RY. A tutorial on the cross-entropy method.

Annals of operations research. 2005;134(1):19-67.

27. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to

prevent neural networks from overfitting. The Journal of Machine Learning Research.

2014;15(1):1929-58.

